
UNIVERSITY OF KANSAS
Department of Physics

ASTR 794 — Prof. Crossfield — Spring 2025

Problem Set 3: Interiors
Due: Tuesday, March 25, 2025, in class

This problem set is worth 60 points.

1. Overcoming the Coulomb barrier [15 pts]
In this problem you will show that classical mechanics predicts that hydrogen fusion cannot happen in the Sun.

(a) Suppose two protons approach each other with equal speeds. What is the minimum speed needed to
overcome the Coulomb barrier and collide, neglecting quantum effects? Take the radius of a proton to be
≈1 fermi = 10−13 cm. [5 pts]
Solution: Here we take the interaction potential to be the Coulomb potential V (r) = zsurfZ2e

2/r down
to the point of contact at about 2 fm. Take a pair of interacting particles to both have velocity v at infinity
– then their combined energy is E = mpv

2. To overcome the Coulomb barrier, this energy must at least
be equal to the potential at the radius of 2 fm. That is,

V (2 fm) = mpv
2 =⇒ vcl =

√
1

mp
V (2 fm) =

√
zsurfZ2e2

mp 2 fm
.

For two protons, zsurf = Z2 = +1. Plugging in numbers, we find, classically, the individual velocities

must be vcl = 8× 106 m s−1 or 4% of the speed of light.

(b) Assuming the proton speeds obey a Maxwell-Boltzmann distribution

p(v) =

√
2

π

(mp

kT

)3

v2 exp(−mpv
2/2kT )

with T = 15.7 × 106 K (the central temperature of the Sun), what is the most probable speed (i.e., the
speed at the peak of the distribution function)? [5 pts]
Solution: First we give a reminder of how the Maxwell-Boltzmann distribution can be derived. In thermal
equilibrium, the density of a given microstate is proportional to the Boltzmann factor of that state, which
depends on the energy. Here, the energy is E = 1

2mpv⃗ · v⃗, with v⃗ the velocity. The phase-space density
is therefore proportional to

p(v⃗)dv⃗ ∝ exp (−mpv⃗ · v⃗/2kT ) dv⃗ =⇒ p(v)dv ∝ v2 exp
(
−mpv

2/2kT
)
dv,

where v = |v⃗| and where the second equality comes from the assumption of isotropy and the volume
element in 3-dimensional velocity space. One can integrate over v from 0 to ∞ to find the normalization
constant; one finds

p(v)dv =

√
2

π

(mp

kT

)3/2

v2 exp
(
−mpv

2/2kT
)
dv .

The most probable velocity, defined by the maximum value of p(v), is found by solving p′(vpeak) = 0.
This gives vpeak =

√
2kT/mp.

For a temperature of 15.7 × 106 K, the most probable velocity is vpeak ≈ 5× 105 m s−1 . Comparing
this to the classical velocity from Prob. ??, we see that vcl/vpeak ≈ 16, which is not very close.

(c) You might wonder whether a small minority of protons in the tail of the M-B distribution could fuse. Give
an order of magnitude estimate for the number of protons in the Sun, and for the number of those protons
that are energetic enough to fuse. You may find it useful to know that for large u0,

4√
π

∫ ∞

u0

u2e−u2

du ≈ 2√
π
u0e

−u2
0 . [5pts]
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Solution: If we treat the sun as being composed completely of hydrogen, then the number of protons is

simply Np = M⊙/mp ≈ 1057 .

The number of protons faster than the classical velocity needed to fuse is the total number of protons times
the probability that a proton has the requisite velocity,

Ncl. fuse = Np P (v > vcl) = Np

∫ ∞

vcl

p(v)dv

Plug in Eq. (1b) and nondimensionalize, setting u = v/vpeak = v
√

mp/2kT .

P (v > vcl) =
4√
π

∫ ∞

ucl

u2e−u2

du ,

where ucl ≡ vcl/vpeak. We must turn this integral into one which we know how to do in terms of special
functions. One trick is to write it as a derivative of a Gaussian integral,

P (v > vcl) = − d

dλ

(
2√
π

∫ ∞

ucl

e−λ2u2

du

)
λ=1

.

One can now look up the definition of the complementary error function

erfc(z) = 1− erf(z) =
2√
π

∫ ∞

z

e−t2dt .

Change variables again to t = λu to get

P (v > vcl) = − d

dλ

(
2

λ
√
π

∫ ∞

λucl

e−t2dt

)
λ=1

= − d

dλ

(
1

λ
erfc(λucl)

)
λ=1

=
1

λ2
erfc(λucl) +

2

λ
√
π
e−λ2u2

clucl

∣∣∣
λ=1

= erfc(ucl) +
2√
π
e−u2

clucl .

One must now numerically evaluate this with ucl = vcl/vpeak ≈ 16, which is problematic since ucl ≫ 1,
so P (v > vcl) is going to be very, very small. This can be made simpler by using an aysmptotic expansion
for erfc (see e.g. Abromowitz and Stegun)

erfc(z) =
e−z2

z
√
π

(
1 +O(z−2)

)
.

We see that the second term in P (v > vcl) is more important than the erfc term. Taking the log,

lnP (v > vcl) ≈ ln
2√
π
+ lnucl − u2

cl ≈ −263 .

or P (v > vcl) ≈ 10−114 .
Comparing this with the number of protons in the sun,

Ncl. fuse = Np P (v > vcl) ≈ 1057 10−114 ≈ 10−57 .

There are no protons in the sun moving fast enough to classically overcome the Coulomb barrier in a
collision with an equally energetic proton.

2. Polytropes [35 pts]. They’re old-fashioned, but polytropic interior models (where P = Kρ1+1/n) can provide
some insights that modern numerical models struggle to provide.

(a) For generic index n, derive the Lane-Emden equation from the equation of hydrostatic equilibrium. [5 pts]
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(b) Show that the total mass of a polytropic star is

M = 4πρcλ
3
nz

2
surf

∣∣∣∣dϕn

dz

∣∣∣∣
z=zsurf

.

The factor λn is defined as

λn ≡

[
(n+ 1)

Kρ
(1−n)/n
c

4πG

]1/2

(you may assume this form), and zsurf specifies the outer radius of the star: ϕn(zsurf) = 0. [4 pts]
Solution:

M =

∫ R

0

4πr2ρdr

=

∫ zsurf

0

4π (λnz)
2
(ρcϕ

n) (λndz)

= 4πλ3
nρc

∫ zsurf

0

z2ϕndz

Using the Lane-Emden equation to replace ϕn,

M = 4πλ3
nρc

∫ zsurf

0

z2
(
− 1

z2
d

dz

[
z2

dϕn

dz

])
dz

= −4πλ3
nρc

∫ zsurf

0

d

dz

[
z2

dϕn

dz

]
dz

= −4πλ3
nρc

[
z2

dϕn

dz

]z=zsurf

z=0

= −4πλ3
nρcz

2
surf

dϕn

dz

∣∣∣∣
z=zsurf

M = 4πλ3
nρcz

2
surf

∣∣∣∣dϕn

dz

∣∣∣∣
z=zsurf

The last line obtains since dϕn

dz

∣∣∣
z=zsurf

< 0.

(c) Show that the ratio of the mean density to the central density is

⟨ρ⟩
ρc

=
3

zsurf

∣∣∣∣dϕn

dz

∣∣∣∣
z=zsurf

. [4pts]

Solution: Using our result from part a), the mean density of the star is,

⟨ρ⟩ =
M

4
3πR

3

=
4πλ3

nρcz
2
surf

∣∣∣dϕn

dz

∣∣∣
z=zsurf

4
3π (λnzsurf)

3

=
3ρc
zsurf

∣∣∣∣dϕn

dz

∣∣∣∣
z=zsurf

.

The desired result follows directly.
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(d) Show that the central pressure is

Pc =
GM2

R4

[
4π(n+ 1)

∣∣∣∣dϕn

dz

∣∣∣∣2
z=zsurf

]−1

. [4pts]

Solution: Starting from the polytropic equation of state, we have Pc = Kρ
1+1/n
c . Solving for K using

equation 2b we find,

K =
4πGλ2

n

(n+ 1)ρ
(1−n)/n
c

.

Thus,

Pc = Kρ1+1/n
c

=
4πGλ2

nρ
2
c

(n+ 1)

=
4πGλ2

n ⟨ρ⟩
2

(n+ 1)
(

⟨ρ⟩
ρc

)2

=
4πGλ2

n

(
M

4
3πR

3

)2

(n+ 1)

(
3

zsurf

∣∣∣dϕn

dz

∣∣∣
z=zsurf

)2

=
GM2 (λnzsurf)

2

4π(n+ 1)R6

(∣∣∣dϕn

dz

∣∣∣
z=zsurf

)2

=
GM2

R4

[
4π(n+ 1)

∣∣∣∣dϕn

dz

∣∣∣∣2
z=zsurf

]−1

.

(e) Write a quick program that numerically solves the Lane-Emden equation for ϕ(z) and zsurf given arbitrary
n. Provide your code (it doesn’t have to be pretty). Use it to solve for ϕ(z) and plot it for n=1, 2, 3, and 4.
Show that your result agrees well with the analytic solution of ϕ(z) for n=1. [8 pts]
Solution:
Fig. 1 shows the resulting plot. The code used is shown in the see solution below, in the next part.

(f) Use your code to model and plot ϕ(r), P (r), ρ(r), and the enclosed mass M(r) for the Sun, assuming
n=3. [4 pts]
Solution:
Fig. 2 shows the resulting profiles. The code used is shown below:

from pylab import *
import pandas as pd

G = 6.673e-11
rsun = 695508000.0
msun = 1.9891e+30

def solve_lane_emden(rstar, mstar, n, npts=10000, verbose=False,
retparams=False):
"""
:INPUTS:
rstar : float
Radius of star to model, in meters
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Figure 1: Polytropic model solutions for n = 1, 2, 3, 4. The numerical solution for n = 1 (solid blue line) agrees well
with the analytic solution (dotted line).

mstar : float
Mass of star to model, in kg

n : float (0<n<5)
Polytropic index.

:OUTPUTS:
Pandas DataFrame with relevant internal profiles.

2025-03-07 13:26 IJMC: Created
"""
z = np.linspace(0,15,npts+1)[1:]
phi = np.ones(npts)
dz = np.mean(np.diff(z))

for ii in range(1,npts):
dphidz = -1/z[ii-1]**2 * (phi[0:ii]**n * z[0:ii]**2 * dz).sum()
phi[ii] = phi[ii-1] + dphidz * dz

# My kludgey way to find the surface location:
try:

zsurf = z[(phi<=0).nonzero()[0]][0]
except:

zsurf = np.interp(0, phi[::-1], z[::-1])
if verbose:

print(’For n=%1.3f, z_surf=%1.5f’ % (n, zsurf))

lambd = rstar / zsurf
integral = ((z**2 * phi**n)[z<=zsurf] * dz).sum()
rho_c = mstar / (4*pi*lambd**3 * integral)
if verbose:
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print(’For n=%1.3f, rho_c=%1.5f’ % (n, rho_c))

K = lambd**2 * (4*np.pi*G) / ((n+1) * (rho_c**(1./n - 1)))
rho = rho_c * phi**n
pressure = K * rho**(1 + 1./n)
Menclosed = 4*np.pi*lambd**3 * rho_c * np.cumsum(((z**2 * phi**n) * dz))

# Create an output table with all relevant quantities:
out = pd.DataFrame(dict(z=z))
out[’r’] = z * lambd
out[’phi’] = phi
out[’rho’] = rho
out[’M’] = Menclosed
out[’P’] = pressure

index = z<=zsurf
if retparams:

params = dict(n=n, zsurf=zsurf, rstar=rstar, mstar=mstar, npts_in=npts,
npts_out=index.sum(), rho_c=rho_c, K=K, lambd=lambd)

ret = (out[index], params)
else:

ret = out[index]
return ret

rstar = rsun
mstar = msun
figure()
for n in [1,2,3,4]:

out, params = solve_lane_emden(rstar, mstar, n, retparams=True)
plot(out.z, out.phi, label=’$n=%i$’ % n)

plot(out.z[out.z<=np.pi], (np.sin(out.z)/out.z)[out.z<=np.pi], ’:k’,
label=’$\phi(z)$ = sinc$(z)$’)

leg=legend()
xlim(0, xlim()[1])
ylim(0, ylim()[1])
xlabel(’$z$’, fontsize=16)
ylabel(’$\phi(z)$’, fontsize=16)

n = 3
rstar = rsun
mstar = msun
out, params = solve_lane_emden(rstar, mstar, n, retparams=True)

Pscale = int(np.log10(out.P[np.isfinite(out.P)].max()))

figure()
ax1=subplot(411)
plot(out.z/params[’zsurf’], out.phi)
ylabel(’$\phi(r)$’)
ax2=subplot(412)
plot(out.z/params[’zsurf’], out.rho)
ylabel(’$\\rho(r)$ [kg/m$ˆ3$]’)
ax3=subplot(413)
plot(out.z/params[’zsurf’], out.M/mstar)
ylabel(’$M(r)/M_*$’)
ax4=subplot(414)
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Figure 2: Solar polytropic model for n = 3.

plot(out.z/params[’zsurf’], out.P/10**Pscale)
ylabel(’$P(r)$ [$10ˆ{%i}$ Pa]’ % Pscale )

axs = [ax1, ax2, ax3, ax4]
[ax.set_ylim(0, ax.get_ylim()[1]) for ax in axs]
[ax.set_xlim(0, 1) for ax in axs]
[ax.set_xlabel(’’) for ax in axs[0:-1]]
[ax.set_xticklabels([]) for ax in axs[0:-1]]

(g) Compute the implied nuclear luminosity of your polytropic Solar model. Take the nuclear energy genera-
tion rate per unit volume to be

ϵV = (2.46× 106) ρ2X2T
−2/3
6 exp

(
−33.81 T

−1/3
6

)
erg s−1 cm−3,

where ρ is in g cm−3, T6 is the temperature in units of 106 K, and X = 0.6 is the hydrogen mass fraction.
First, write the calculation as the product of a dimensioned constant and a dimensionless integral involving
ϕn and z. (For the Tc inside the integral you can use 15.7× 106 K.) Show the value of your constant, and
the form of the dimensionless integral. Then, evaluate the nuclear luminosity in erg s−1. Compare to the
actual luminosity of 3.839× 1033 erg s−1. [6 pts]
Solution: Plugging ρc, Tc and X into ϵV gives

ϵ = (3.53× 109 erg s−1 cm−3)ϕ
16/3
3 exp(−13.5/ϕ

1/3
3 ) .

This may be integrated over the volume to calculate the total luminosity,

L =

∫ R

0

ϵ4πr2dr = 4πλ3
3

∫ zsurf

0

ϵz2dz .

Numerically integrating the luminosity and plugging in the value of λ ≈ 7.66× 109 cm gives

L⊙,poly ≈
(
2.25× 1040 erg s−1

) ∫ zsurf

0

ϕ
16/3
3 e

(
−13.5/ϕ

1/3
3

)
z2dz ≈ 6.5× 1033 erg s−1.
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This is about a factor of two greater than the measured solar luminosity of L⊙,meas ≈ 3.84×1033 erg s−1.

3. Opacity due to Thomson scattering [10 pts]
Consider an atmosphere of completely ionized hydrogen having the same mass density as Earth’s atmosphere at
sea level (ρ = 1.23 kg m−3). Calculate the path length over which a beam of light would be attenuated to half
of its original intensity, due to Thomson scattering by free electrons.

Solution: Consider the radiative transfer equation along a path with no source term,

I(s) = I0e
−τ , τ ≡

∫ s

0

αds .

The optical depth at half-attenuation is found from

I(s)

I0
=

1

2
= e−τ1/2 =⇒ τ1/2 = ln 2 .

For a homogenous medium, α is independent of the point along the path, so τ = αs.

To find α due to Thomson scattering, rewrite it in terms of the scattering cross section, α = neσT where ne is
the number density of scatterers (electrons), and recall that

σT =
8π

3

(
e2

mec2

)2

.

Convert the number density ne into the mass density of the atmosphere by using charge neutrality, so ne =
np ≈ ρ/mp where ρ is the total mass density; most of the mass density comes from protons. Combining, find

ln 2 = αs1/2 =
ρ

mp
σT s1/2 =⇒ s1/2 =

mp ln 2

ρσT
.

The density of Earth’s atmosphere at sea level depends on temperature, of course. However, the quantity is
standardized at 1 atm and 15◦C as ρ = 1.23 kg m−3. Finally plugging in numbers yields s1/2 ≈ 14 m .
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