
UNIVERSITY OF KANSAS
Department of Physics

ASTR 794 — Prof. Crossfield — Spring 2025

Problem Set 4: Atmospheres
Due: Thursday, April 10, 2025, in class

This problem set is worth 70 points.

1. Gray, Plane-Parallel, Eddington-Approximation Atmosphere [20 pts]
Show that in a plane-parallel, gray atmosphere under the Eddington Approximation:

(a) S = ⟨I⟩,
(b) Prad = F

c (τ +Q) (where Q is a constant of integration),

(c) S = 3F
4π

(
τ + 2

3

)
, and

(d) T (τ) = Teff

(
3τ
4 + 1

2

)1/4
.

2. Limb darkening [20 pts].
In this problem you will derive a relation between the measured limb darkening of a star, and the source function
of its photosphere. Let the intensity of the stellar disk be Iν(r), where r is the distance from the center of the
stellar disk in units of the stellar radius (i.e. r = 0 at the center, and r = 1 at the limb).

(a) Instead of r it is traditional to express Iν as a function of µ ≡
√
1− r2. Show that µ = cos θ, where θ is

the angle between the line of sight and the normal to the stellar surface.
Solution: Refer to Fig. 1 for the geometry of the problem. The two rays toward Earth are parallel. Take
the normal to the star’s surface at some reduced radius r and continue it through to the center of the circle.
This line intersects the two parallel rays, which is why the two angles labeled θ in the figure are the same
angle.
Construct the right triangle shown in the figure. The hypotenuse is 1 and the height is r. Therefore the base

is
√
1− r2, from the Pythagorean theorem. From the definition of the cosine, cos θ =

√
1− r2 = µ .

(b) We want an expression for the intensity at the stellar surface in terms of the source function. Start from the
the radiative transfer equation for a plane-parallel atmosphere. Show that for an upward-propagating ray
coming from far below to the top surface, the formal solution is

Iν(µ) =

∫ ∞

0

dτν
Sν(τν)

µ
e−τν/µ, (1)
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Figure 1: The geometry of Prob. 2.
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where τν is the vertical optical depth.
Solution: Let us take this opportunity to remind ourselves of the distinction between optical depth and
vertical optical depth. Start with the form of the radiative transfer equation in terms of optical depth,

dIν
dτν

= Sν − Iν ,

where Sν = jν/αν is the source function, and τν is the actual optical depth. Define the new variable
dξν ≡ −dz = −dτν cos θ which is the vertical component along the ray, and the sign is chosen so that
the “vertical optical depth” starts at 0 at the top (larger z) and increases as one goes down (smaller z). In
terms of ξν , the RTE becomes

Iν − Sν = cos θ
dIν
dξν

= µ
dIν
dξν

.

Multiply by the integrating factor e−ξν/µ. Collect all the terms which have Iν ,

e−ξν/µSν = e−ξν/µ

(
Iν − µ

dIν
dξν

)
= −µ

d

dξν

(
e−ξν/µIν

)
.

Divide through by µ and now the right hand side is a total derivative. Integrate over dξν from 0 to ∞,∫ ∞

0

dξνe
−ξν/µ

Sν

µ
= −

∫ ∞

0

dξν
d

dξν

(
e−ξν/µIν

)
= −e−ξν/µIν

∣∣∣ξν=∞

ξν=0
= Iν(ξν = 0, µ) .

By an unfortunate convention, the symbol τν is used instead of ξν , but please be aware that the meaning is
the vertical optical depth.

(c) Suppose the (unknown) source function can be represented by a polynomial,

Sν(τν) = a0 + a1τν + a2τ
2
ν + · · ·+ anτ

n
ν . (2)

Show that under this assumption the emergent intensity is given by

Iν(µ) = a0 + a1µ+ 2a2µ
2 + · · ·+ (n!)anµ

n, (3)

using the definite integral
∫∞
0

xn exp(−x)dx = n!. In this way the measured limb-darkening law can be
used to determine the source function, and therefore the temperature stratification for an LTE atmosphere.
Solution: Substitute Eq. (2) into Eq. (1) and change variables to x ≡ τν/µ. This gives

Iν(µ) =

∫ ∞

0

dx

n∑
i=0

ai(xµ)
ie−x .

Each term in the sum may be integrated using the given definite integral, giving Eq. (3).

(d) Show that for a gray LTE atmosphere, the predicted limb darkening law for the wavelength-integrated
intensity at the stellar surface is

I(θ)

I(0)
=

2

5
+

3

5
cos θ.

Solution: For a gray atmosphere (τν = τ ), and in a plane parallel atmosphere with no energy generation
(dF/dz = 0, flux is conserved from layer to layer), we found in class that

S = ⟨I⟩ ,

where ⟨f⟩ = 1
2

∫ 1

−1
fdµ is an angular average. This yields the integro-differential equation

1

2

∫ 1

−1

Idµ = I − µ
dI

dτ
.
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We simply state the solution,

S =
3F

4π
[τ + q(τ)] ≈ 3F

4π

(
τ +

2

3

)
.

This satisfies the assumption of Prob. 2c, with a1 = 3F
4π , a0 = 2

3a1, and all other an’s vanishing. Putting
this into the result from Prob. 2c, find I(µ) = a0 + a1µ, where µ = cos θ. Evaluating the ratio gives

I(θ)

I(0)
=

a0 + a1 cos θ

a0 + a1
=

a1(2/3 + cos θ)

a1(2/3 + 1)
=

2

5
+

3

5
cos θ .
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3. Radiative transfer in spherical coordinates [20 pts].
After the past month’s classes you should be familiar with the radiative diffusion equation for a plane-parallel
atmosphere, an appropriate model for a thin photosphere. In this problem you will repeat those steps for a
spherical atmosphere, as appropriate for the bulk of a star. We will assume the star is spherically symmetric and
that consequently Iν = Iν(r, θ), where r is the radial coordinate and θ is the angle of a ray relative to the local
radius vector (and not the polar angle referring to the position with respect to the stellar center). See Fig. 2.

(a) Use the chain rule,
dIν
ds

=
∂Iν
∂r

dr

ds
+

∂Iν
∂θ

dθ

ds
, (4)

to show that the radiative transfer equation (RTE) can be written

cos θ
∂Iν
∂r

− sin θ

r

∂Iν
∂θ

+ ρκνIν − jν = 0. (5)

In this expression, κν is the opacity, measured in units of cm2 g−1; and jν is the emission coefficient,
measured in units of erg cm−3 s−1 sr−1 Hz−1 [both as defined by Rybicki & Lightman (p. 9-10)].
Solution: Consider a photon traveling a distance ds along a ray at an angle θ from the local radius vector
(See Figure 2). Then, the radial distance the photon has traveled is dr = ds cos θ, while the incremental
difference in angle between the ray and the local radial vector is dθ = −ds sin θ

r . Thus, we find

dr

ds
= cos θ

dθ

ds
= − sin θ

r

Substitution into the equation of radiative transfer,

dIν
ds

=
∂Iν
∂r

dr

ds
+

∂Iν
∂θ

dθ

ds
= −ρκνIν + jν ,

with the chain rule, yields the desired result.

Figure 2: Geometry relevant to Prob. 3. A photon propagates a distance ds along a direction θ from the local radius
vector. As a result its radial coordinate increases by dr and the angle to the local radius vector decreases by dθ.
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(b) Integrate the RTE over all solid angles to show

dFν

dr
+

2

r
Fν + cρκνuν − ρϵν = 0, (6)

where ϵν is the (angle-averaged) emissivity as defined on p. 9 of Rybicki & Lightman.
Solution:

0 =

∫ [
cos θ

∂Iν
∂r

− sin θ

r

∂Iν
∂θ

+ ρκνIν − jν

]
dΩ

=
∂

∂r

∫
cos θIνdΩ− 1

r

∫
sin θ

∂Iν
∂θ

dΩ+ ρκν

∫
IνdΩ−

∫
jνdΩ

=
∂Fν

∂r
− 2π

r

∫
sin2 θ

∂Iν
∂θ

dθ + ρκνcuν − 4πjν

=
∂Fν

∂r
− 2π

r

[
sin2 θIν |πθ=0 −

∫
2 cos θ sin θIνdθ

]
+ ρκνcuν − ρϵν

=
∂Fν

∂r
+

1

r

[∫
2 cos θIνdΩ

]
+ ρκνcuν − ρϵν

=
∂Fν

∂r
+

2

r
Fν + ρκνcuν − ρϵν

(c) Multiply the RTE by cos θ and integrate over all solid angles to show

c
dpν
dr

+ ρκνFν = 0, (7)

where you have assumed jν to be isotropic, and Iν to be nearly isotropic. Here, pν is the specific radiation
pressure given by

pν =
1

c

∫
Iν cos

2 θ dΩ. (8)

Solution:

0 =

∫
cos θ

[
cos θ

∂Iν
∂r

− sin θ

r

∂Iν
∂θ

+ ρκνIν − jν

]
dΩ

=
d

dr

∫
cos2 θIνdΩ− 1

r

∫
cos θ sin θ

∂Iν
∂θ

dΩ+ ρκν

∫
cos θIνdΩ−

∫
cos θjνdΩ

= c
dpν
dr

− 2π

r

∫
sin2 θ cos θ

∂Iν
∂θ

dθ + ρκνFν − 0

= c
dpν
dr

− 2π

r

[
sin2 θ cos θIν |πθ=0 −

∫
sin θ

(
3 cos2 θ − 1

)
Iνdθ

]
+ ρκνFν

= c
dpν
dr

+
1

r

[∫
Iν

(
3 cos2 θ − 1

)
dΩ

]
+ ρκνFν

= c
dpν
dr

+
1

r
[3cpν − cuν ] + ρκνFν

≈ c
dpν
dr

+ ρκνFν

Where in the last line we have noted that pν = 1
3uν since Iν is nearly isotropic.

(d) Use the preceding equation, as well as the blackbody formula for radiation pressure, the relation F =
L/4πr2 and the definition of the Rosseland mean opacity κR to show

dT

dr
= − 3ρκRL

64πσr2T 3
. (9)
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Solution: The radiation pressure of a blackbody is given by

pν =
uν

3
=

4πBν

3c
.

Substituting in our result from part b) we find:

0 = c
dpν
dr

+ ρκνFν

=
4π

3κν

dBν

dr
+ ρFν

=

∫ [
4π

3

1

κν

dBν

dT

dT

dr
+ ρFν

]
dν

=
4π

3

dT

dr

∫
1

κν

dBν

dT
dν + ρ

∫
Fνdν

=
4π

3

dT

dr

1

κR

d

dT

∫
Bνdν + ρF

=
4π

3κR

dT

dr

d

dT

(
σT 4

π

)
+

ρL

4πr2

0 =
16σT 3

3κR

dT

dr
+

ρL

4πr2

dT

dr
= − 3ρκRL

64πσr2T 3
.

4. Corona time [10 pts].
The solar corona may have a base electron density of 108 cm−3 at T = 2 × 106 K. Assume that the corona
has an inner radius equal to that of the Sun, the corona is isothermal and that it obeys the equation of hydro-
static equilibrium. Compute the X-ray free-free emission from this model corona and compare with the total
luminosity of the Sun
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