
UNIVERSITY OF KANSAS
Department of Physics

ASTR 794 — Prof. Crossfield — Spring 2025

Problem Set 5: Temperatures and Albedos
Due: Thursday, April XXXXX, 2025, in class

This problem set is worth XXXX points.

1. Equilibrium Temperature [10 pts] Assume a planet with radius RP and Bond albedo AB on a circular orbit
with separation a around a star with radius R∗ and temperature Teff . Assume that the planet’s day and night
sides emit as blackbodies with temperatures TD and TN , respectively, and that the planet’s luminosity is driven
entirely by absorbed incident radiation.

(a) Show that
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Solution: The planet must be in energy balance, so Pabs = Pemit.
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Combining these relations gives the desired result.

(b) For the Earth, plot TN vs. TD under this simple model.
Solution:
See Fig. 1 for the solution. Note that this is somewhat unrealistic, since it suggests that if one hemisphere
is above freezing the other must be below freezing; and we know it doesn’t freeze every time the sun goes
down!

2. Bond Albedos Depend on the Star [20 pts]
In this problem, you will investigate how a planet’s Bond albedo AB depends not just on its albedo spectrum
Aλ but also on the incident spectrum of the host star (e.g., the spectral type).

(a) Assume a planet orbiting its star at the “Earth-equivalent insolation distance” (EEID) — this is a crude
approximation to the habitable zone that assumes a planet receives the same total incident flux Finc from
its star as does the Earth (call this FSC , the Solar Constant flux).
Derive the EEID in terms of Teff , R∗, and FSC [6 pts].
Solution: We must have Finc = FSC , or

Finc =
R2

∗
a2EEID

σT 4
eff = FSC (5)

which then yields

aEEID =

√
σ

FSC
R∗T

2
eff (6)

This gives 1 AU for Earth/sun quantities, so the answer checks out.
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(b) For main-sequence stars with M∗ ≲ M⊙, a useful (but very approximate!) rule of thumb is that roughly
speaking

R∗

R⊙
≈ T∗

T⊙
≈ M∗

M⊙
. (7)

Under this approximation, determine how the EEID scales with stellar radius (or temperature, or mass) [6
pts].
Solution: Under this approximation, it must be true that

aEEID ∝ R∗ ×R2
∗ = R3

∗. (8)

So,

aEEID = 1 AU

(
R∗

R⊙

)3

. (9)

(c) Assume a trivial but interesting planetary albedo spectrum that is zero for λ ≥ 1µm and 0.4 at shorter
wavelengths. Assume that all stars radiate as blackbodies, and calculate what fraction of incident starlight
is reflected away from this planet if it orbits a star of (i) 1.25 M⊙, (i) 1.0 M⊙, (i) 0.4 M⊙. What is the
implied Bond albedo AB in each case? [8 pts]
Solution: The total (bolometric) reflected fraction of incident starlight is of course identical to the Bond
albedo. To get this we must integrate the relevant spectrum over all wavelengths. Specifically, with a
stellar spectrum Bλ(T∗) we have a total reflectance of

AB =
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(10)

M∗/M⊙ Teff /K AB

1.25 7220 0.33
1.0 5777 0.29
0.4 2310 0.049
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Figure 1: TD vs. TN for the Earth, in a simple two-hemisphere model.
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So the Bond albedo depends on where the incoming radiation is strongest. The same albedo spectrum gives
a different AB depending on whether the planet is more or less reflective at the particular wavelengths
where most of the incident starlight comes in.

3. Brightness Temperatures [15 pts]

(a) (5 pts) Calculate the surface flux density of an object emitting as a blackbody, (i.e., Fλ,surf = πBλ), at a
wavelength of 4.5µm and with temperatures of 300 K, 1000 K, and 3000 K. Give your answers in units of
W/m2/µm.
Solution: We just need to plug in λ = 4.5µm into the Planck function, Bλ(T ), for the three temperatures
given – remembering to keep track of units and to multiply by π. When we do that we should get:

Fλ,surf(300 K) = 4.8 W m−2 µm−1

Fλ,surf(1000 K) = 8600 W m−2 µm−1

Fλ,surf(3000 K) = 110000 W m−2 µm−1

(b) (3 pts) Assume that the objects above are Brown Dwarfs: the size of Jupiter, and 10 pc away. Calculate
the observed Fλ for each of the three temperatures above.
Solution: In this case we just need to remember that for a spherical object,

Fλ,obs =

(
R

d

)2

Fλ,surf . (11)

We then plug in the appropriate values – the scale factor is 5.4× 10−20 – and obtain:

Fλ,obs(300 K) = 2.6× 10−19 W m−2 µm−1

Fλ,obs(1000 K) = 4.6× 10−16 W m−2 µm−1

Fλ,obs(3000 K) = 5.7× 10−15 W m−2 µm−1

(c) (3 pts) Using JWST, you observe a brown dwarf 10 pc away and measure a flux density of 3×10−15 W/m2/µm.
Assuming it is the size of Jupiter, what is its surface flux density?
Solution: We just use the same relations as presented in part (b) above. Multiplying the observed flux
density by (d/R)2 gives

Fλ,surf = 56000 W m−2 µm−1 (12)

(d) (4 pts) What must the surface temperature of this brown dwarf be, in order to explain your observed flux
density?
Solution: From our answers to the previous part, we can see that the temperature needs to be between
1000 K and 3000 K. We could just keep guessing different temperatures, or we could just calculate Fλ

for a range of temperatures and see where this observed value falls. Fig. 2 shows the result of that, which
implies a temperature of Tsurf ≈ 2100 K .
Python code to reproduce these calculations and generate this plot is listed below.
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# Import necessary modules
import numpy as np
from pylab import *

# Define a function:
def bnu(T, lam):

"""Planck function in frequency.

:INPUTS:
T : scalar or array
temperature in Kelvin

lam : scalar or array
wavelength in microns [but intensity will be per Hz]

Value returned is in SI units: W/mˆ2/Hz/sr
"""
from numpy import exp

c = 299792458 # speed of light, m/s
h = 6.626068e-34 # SI units: Planck’s constant
k = 1.3806503e-23 # SI units: Boltzmann constant, J/K
nu = c/(lam/1e6)
expo = h*nu/(k*T)
nuoverc = 1./ (lam/1e6)
return ((2*h*nuoverc**2 * nu)) / (exp(expo)-1)
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Figure 2: Flux density observed for an object emitting as a blackbody at a distance of 10 pc. The horizontal dashed
line shows the observed flux density; the red circle and vertical dotted line indicate the brightness temperature required
to match the observation.
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def blam(T, lam):
""" Same as bnu, for returns W/mˆ2/um/sr """
c = 299792458. # m/s
nu = c/(lam/1e6) # Hz
# Take advantage of the fact that (lam F_lam) = (nu F_nu):
return bnu(T, lam) * (nu / lam)

parsec = 3.086e16 # Meters per parsec
rjupiter = 7.149e7 # Meters; Jupiter’s radius

# Set up wavelengths and temperatures:
wavelength = 4.5 # microns
temperatures = np.array([300, 1000, 3000])
distance = 10 * parsec

flam_surf = np.pi * blam(temperatures, wavelength)
print(’Surface flux density:’)
for t,f in zip(temperatures, flam_surf):

print(’%i K: %1.2g W/m2/micron’ % (t,f))

flam_obs = flam_surf * (rjupiter/distance)**2

print(’Observed flux density:’)
for t,f in zip(temperatures, flam_obs):

print(’%i K: %1.2g W/m2/micron’ % (t,f))

flam_observed = 3e-15
flam_surf_inferred = flam_observed * (distance/rjupiter)**2

temps = np.arange(300, 3000)
flam_obs_hires = np.pi * blam(temps, wavelength) * (rjupiter/distance)**2

temp_inferred = np.interp(flam_observed, flam_obs_hires, temps)

figure()
loglog(temps, flam_obs_hires)
plot(xlim(), [flam_observed]*2, ’--k’)
plot([temp_inferred]*2, [0,flam_observed], ’:k’)
plot(temp_inferred, flam_observed, ’or’, mew=1, mec=’k’, ms=10)
xlabel(’Blackbody Temperature [K]’, fontsize=16)
ylabel(’Observed Flux Density at d=10 pc\n [W/m2/micron]’, fontsize=14)
xlim(temps.min(), temps.max())
ylim(flam_obs_hires.min(), flam_obs_hires.max())
tight_layout()
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