UNIVERSITY OF KANSAS
Department of Physics
ASTR 794 — Prof. Crossfield — Spring 2025

Problem Set 5: Temperatures and Albedos
Due: Thursday, April XXXXX, 2025, in class
This problem set is worth XXXX points.

1. Equilibrium Temperature [10 pts] Assume a planet with radius Rp and Bond albedo A g on a circular orbit
with separation @ around a star with radius R, and temperature T.g. Assume that the planet’s day and night
sides emit as blackbodies with temperatures Tp and Ty, respectively, and that the planet’s luminosity is driven
entirely by absorbed incident radiation.

(a) Show that

1 .
Té+T;‘v2<R>T;‘H(1A3). (1)
a
Solution: The planet must be in energy balance, so Pyps = Penit-
Pabs = FR?D (1 - AB) ]Dinc (2)
and I B2
_ * * 4
P = W = ?USBTCﬁw 3)
Meanwhile,
Pemit = 271-R?DO’SB (Tg + T]%/) . (4)

Combining these relations gives the desired result.

(b) For the Earth, plot Ty vs. Tp under this simple model.
Solution:

See Fig. [I]for the solution. Note that this is somewhat unrealistic, since it suggests that if one hemisphere
is above freezing the other must be below freezing; and we know it doesn’t freeze every time the sun goes
down!

2. Bond Albedos Depend on the Star [20 pts]

In this problem, you will investigate how a planet’s Bond albedo Ap depends not just on its albedo spectrum
A but also on the incident spectrum of the host star (e.g., the spectral type).

(a) Assume a planet orbiting its star at the “Earth-equivalent insolation distance” (EEID) — this is a crude
approximation to the habitable zone that assumes a planet receives the same total incident flux Fi,. from
its star as does the Earth (call this F's¢, the Solar Constant flux).

Derive the EEID in terms of T,g, R, and Fsc [6 pts].
Solution: We must have F},. = Fgc, or
R?

Finc = 5 O—Téff - FSC (5)

OEEID

g
GEEID = A/ ER*TEH (6)

This gives 1 AU for Earth/sun quantities, so the answer checks out.

which then yields




(b)

(©

For main-sequence stars with M, < Mg, a useful (but very approximate!) rule of thumb is that roughly
speaking

R, T, M,
Ry ~To Mo
Under this approximation, determine how the EEID scales with stellar radius (or temperature, or mass) [6
pts].
Solution: Under this approximation, it must be true that

)

AEEID X R* X Ri = Ri (8)
So,
R\’
aEEIDlAU<R > . (9)
©

Assume a trivial but interesting planetary albedo spectrum that is zero for A > 1 m and 0.4 at shorter
wavelengths. Assume that all stars radiate as blackbodies, and calculate what fraction of incident starlight
is reflected away from this planet if it orbits a star of (i) 1.25 Mg, (i) 1.0 M, (i) 0.4 M. What is the
implied Bond albedo A g in each case? [8 pts]

Solution: The total (bolometric) reflected fraction of incident starlight is of course identical to the Bond
albedo. To get this we must integrate the relevant spectrum over all wavelengths. Specifically, with a
stellar spectrum B) (7) we have a total reflectance of

S ANBA(TL) 0.4 [, "™ BA(Ty) dA

Ap = == = 9
Jo BA(Tv) Jo Ba(T) dX

(10)
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Figure 1: Tp vs. Ty for the Earth, in a simple two-hemisphere model.



So the Bond albedo depends on where the incoming radiation is strongest. The same albedo spectrum gives
a different Ap depending on whether the planet is more or less reflective at the particular wavelengths
where most of the incident starlight comes in.

3. Brightness Temperatures [15 pts]

(a) (5 pts) Calculate the surface flux density of an object emitting as a blackbody, (i.e., F\ surt = 7B)), ata
wavelength of 4.5 pm and with temperatures of 300 K, 1000 K, and 3000 K. Give your answers in units of
W/m?/pm.

Solution: We just need to plug in A = 4.5um into the Planck function, B (T'), for the three temperatures
given — remembering to keep track of units and to multiply by 7. When we do that we should get:

Fsurt (300 K) = 4.8 Wm™ 2 ym ™!

F surf (1000 K) = 8600 W m ™2 ym~*

F cue£ (3000 K) = 110000 W m ™2 pm

(b) (3 pts) Assume that the objects above are Brown Dwarfs: the size of Jupiter, and 10 pc away. Calculate
the observed F) for each of the three temperatures above.

Solution: In this case we just need to remember that for a spherical object,

R 2
F/\,obs: (d) F)Hsurf- (11)

We then plug in the appropriate values — the scale factor is 5.4 x 10729 — and obtain:

Frobs(300K) = 2.6 x 1071 Wm ™2 ym~*

F,\,obs(1000 K) —=4.6 X 10—16 W m_2 ,um_l

F obs(3000 K) = 5.7 x 107 W m—2 ™!

(c) (3 pts) Using JIWST, you observe a brown dwarf 10 pc away and measure a flux density of 3x 10715 W/m?/um.
Assuming it is the size of Jupiter, what is its surface flux density?

Solution: We just use the same relations as presented in part (b) above. Multiplying the observed flux
density by (d/R)? gives

F surf = 56000 W m™2 pym ~* (12)

(d) (4 pts) What must the surface temperature of this brown dwarf be, in order to explain your observed flux
density?
Solution: From our answers to the previous part, we can see that the temperature needs to be between
1000 K and 3000 K. We could just keep guessing different temperatures, or we could just calculate Fly
for a range of temperatures and see where this observed value falls. Fig. 2] shows the result of that, which

implies a temperature of | T4,.+ ~ 2100 K |.

Python code to reproduce these calculations and generate this plot is listed below.



# Import necessary modules
import numpy as np
from pylab import =

# Define a function:
def bnu (T, lam):
"""Planck function in frequency.

: INPUTS:
T : scalar or array
temperature in Kelvin

lam : scalar or array
wavelength in microns [but intensity will be per Hz]

Value returned is in SI units: W/m"2/Hz/sr

nun

from numpy import exp

c = 299792458 # speed of light, m/s

h = 6.626068e-34 # SI units: Planck’s constant

k = 1.3806503e-23 # SI units: Boltzmann constant, J/K
nu = ¢/ (lam/1leé6)

expo = h*nu/ (k*T)

nuoverc = 1./ (lam/le6)
return ((2+xhsnuovercx*2 = nu)) / (exp(expo)-1)
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Figure 2: Flux density observed for an object emitting as a blackbody at a distance of 10 pc. The horizontal dashed
line shows the observed flux density; the red circle and vertical dotted line indicate the brightness temperature required
to match the observation.



def blam(T, lam):
""" Same as bnu, for returns W/m"2/um/sr """
c = 299792458. # m/s
nu = ¢/ (lam/le6) # Hz
# Take advantage of the fact that (lam F_lam) = (nu F_nu):
return bnu (T, lam) x (nu / lam)

parsec = 3.086el6 # Meters per parsec
rjupiter = 7.149e7 # Meters; Jupiter’s radius

# Set up wavelengths and temperatures:

wavelength = 4.5 # microns
temperatures = np.array([300, 1000, 3000])
distance = 10 * parsec

flam_surf = np.pi * blam(temperatures, wavelength)
print (' Surface flux density:’)
for t,f in zip(temperatures, flam_ surf):

o)

print (' %i K: %1.2g W/m2/micron’ % (t,f))

flam_obs = flam_surf * (rjupiter/distance) %2

print (' Observed flux density:’)
for t,f in zip(temperatures, flam_obs):

o

print (' %$i K: %1.2g W/m2/micron’ % (t,f))

flam_observed = 3e-15
flam_surf_inferred = flam_observed * (distance/rjupiter) x*2

temps = np.arange (300, 3000)
flam_obs_hires = np.pi * blam(temps, wavelength) * (rjupiter/distance) **2

temp_inferred = np.interp(flam_observed, flam_obs_hires, temps)

figure ()

loglog(temps, flam_obs_hires)

plot (xlim(), [flam_observed]=*2, ’'—-k’)

plot ([temp_inferred]*2, [0,flam_observed], ’':k’)

plot (temp_inferred, flam observed, ’'or’, mew=1l, mec='"k’, ms=10)
xlabel (' Blackbody Temperature [K]’, fontsize=16)

ylabel (' Observed Flux Density at d=10 pc\n [W/m2/micron]’, fontsize=14)
xlim(temps.min(), temps.max())

ylim(flam_obs_hires.min(), flam obs_hires.max())

tight_layout ()




