Unraveling the Mystery of GJ1214b with NIRSPEC

Crossfield, Barman, & Hansen, 2011, ApJ 736:132

Earth 1 Mø GJ 1214 b 6.6 M⊕ Neptune 17 Mo

Keck Science Meeting CIT, Pasadena, 23 Sep 2011

Earth 1 Mo GJ 1214 b 6.6 M⊕ Neptune 17 Mø

Transmission spectroscopy: probes atmospheric composition via $R_{p}(\lambda)$

Observations:

- Two half-nights with NIRSPEC
- One night has insufficient outof-transit baseline

One good night covers ~half of the K band

We get a high S/N spectrum of this K=8.8 M dwarf:

WAVELENGTH

2.061 - 2.090 um 2.118 - 2.1

Removing common-mode variations leaves differential transit signal:

Observed data: no residual transit spectrum visible by eye

Removing common-mode variations leaves differential transit signal:

Simulated observation: transit signal 10x stronger than expected

Removing common-mode variations leaves differential transit signal:

Observed data: no residual transit spectrum visible by eye

Initial transmission spectrum of GJ1214b:

We cross-correlate this spectrum with models to confirm or rule out atmospheric compositions

Model cross-correlation can detect the ensemble of lines in a spectrum:

Normalized cross-correlation

Normalized cross-correlation

Our Results

We rule out hydrogendominated atmospheres in or near chemical equilibrium:

Solar, 10x solar, 30x solar abundances with mild-to-no methane depletion

We cannot constrain atmospheres with flatter spectra:

H-dominated (Low carbon, substantial methane depletion)

Hazes/clouds

Low scale height (high mean molecular weight: e.g., H₂O)

Other results also agree (mostly) on a flat, featureless spectrum:

Bean+2011: 0.8-1.0 um spectrum; flat Desert+2011: Spitzer/IRAC CH1+2; flat Croll+2011: NIR photometry, $R_k > R_J$ (>4 σ) Bean+(1109.0582): 0.6-1.0 um + JHK; flat. Berta+(in prep): 1.1-1.65 um spectrum; flat.

Conclusions

GJ 1214b has a flat transmission spectrum, meaning the planet either:

--Is covered in opaque clouds, OR

--Has a high mean molecular weight atmosphere (e.g., H₂O)

If a 'water' world, GJ 1214b likely formed beyond the snow line and migrated inward without accreting substantial H₂/He

NIRSPEC-like instruments can constrain exoatmospheres, and multi-object spectrographs like MOSFIRE (see Bean+2011) are poised to do even better.

Backup:

- Simulations and time-offset extractions to estimate uncertainties inherent in data
 - Estimation of non-detection confidence

Transmission spectra can constrain atmospheric composition:

Several techniques can characterize exoplanet atmospheres:

	<u>Method:</u>	<u>Signal scales as:</u>
(A)	Transit	(Rp / Rs)^2
(B)	Transmission	(Tp Rp / Mp) (Rp / Rs)^2
(C)	Eclipse	Tp / Ts (Rp / Rs)^2
(D)	Phase curve	ΔTp/Ts (Rp / Rs)^2

Fit a transit model to each wavelength channel:

Initial transmission spectrum of GJ1214b:

BUT: Tilt should not affect spectral features on the narrowest scales