Source code for astrolib

# -*- coding: utf-8 -*-
from numpy import *
   
def deg2rad(degrees):
   return degrees*pi/180.

def rad2deg(radians):
   return radians*180./pi

[docs]def baryvel(dje, deq=0): """ NAME: BARYVEL PURPOSE: Calculates heliocentric and barycentric velocity components of Earth. EXPLANATION: BARYVEL takes into account the Earth-Moon motion, and is useful for radial velocity work to an accuracy of ~1 m/s. CALLING SEQUENCE: dvel_hel, dvel_bary = baryvel(dje, deq) INPUTS: DJE - (scalar) Julian ephemeris date. DEQ - (scalar) epoch of mean equinox of dvelh and dvelb. If deq=0 then deq is assumed to be equal to dje. OUTPUTS: DVELH: (vector(3)) heliocentric velocity component. in km/s DVELB: (vector(3)) barycentric velocity component. in km/s The 3-vectors DVELH and DVELB are given in a right-handed coordinate system with the +X axis toward the Vernal Equinox, and +Z axis toward the celestial pole. OPTIONAL KEYWORD SET: JPL - if /JPL set, then BARYVEL will call the procedure JPLEPHINTERP to compute the Earth velocity using the full JPL ephemeris. The JPL ephemeris FITS file JPLEPH.405 must exist in either the current directory, or in the directory specified by the environment variable ASTRO_DATA. Alternatively, the JPL keyword can be set to the full path and name of the ephemeris file. A copy of the JPL ephemeris FITS file is available in http://idlastro.gsfc.nasa.gov/ftp/data/ PROCEDURES CALLED: Function PREMAT() -- computes precession matrix JPLEPHREAD, JPLEPHINTERP, TDB2TDT - if /JPL keyword is set NOTES: Algorithm taken from FORTRAN program of Stumpff (1980, A&A Suppl, 41,1) Stumpf claimed an accuracy of 42 cm/s for the velocity. A comparison with the JPL FORTRAN planetary ephemeris program PLEPH found agreement to within about 65 cm/s between 1986 and 1994 If /JPL is set (using JPLEPH.405 ephemeris file) then velocities are given in the ICRS system; otherwise in the FK4 system. EXAMPLE: Compute the radial velocity of the Earth toward Altair on 15-Feb-1994 using both the original Stumpf algorithm and the JPL ephemeris IDL> jdcnv, 1994, 2, 15, 0, jd ;==> JD = 2449398.5 IDL> baryvel, jd, 2000, vh, vb ;Original algorithm ==> vh = [-17.07243, -22.81121, -9.889315] ;Heliocentric km/s ==> vb = [-17.08083, -22.80471, -9.886582] ;Barycentric km/s IDL> baryvel, jd, 2000, vh, vb, /jpl ;JPL ephemeris ==> vh = [-17.07236, -22.81126, -9.889419] ;Heliocentric km/s ==> vb = [-17.08083, -22.80484, -9.886409] ;Barycentric km/s IDL> ra = ten(19,50,46.77)*15/!RADEG ;RA in radians IDL> dec = ten(08,52,3.5)/!RADEG ;Dec in radians IDL> v = vb[0]*cos(dec)*cos(ra) + $ ;Project velocity toward star vb[1]*cos(dec)*sin(ra) + vb[2]*sin(dec) REVISION HISTORY: Jeff Valenti, U.C. Berkeley Translated BARVEL.FOR to IDL. W. Landsman, Cleaned up program sent by Chris McCarthy (SfSU) June 1994 Converted to IDL V5.0 W. Landsman September 1997 Added /JPL keyword W. Landsman July 2001 Documentation update W. Landsman Dec 2005 Converted to Python S. Koposov 2009-2010 """ #Define constants dc2pi = 2 * pi cc2pi = 2 * pi dc1 = 1.0e0 dcto = 2415020.0e0 dcjul = 36525.0e0 #days in Julian year dcbes = 0.313e0 dctrop = 365.24219572e0 #days in tropical year (...572 insig) dc1900 = 1900.0e0 au = 1.4959787e8 #Constants dcfel(i,k) of fast changing elements. dcfel = array([1.7400353e00, 6.2833195099091e02, 5.2796e-6, 6.2565836e00, 6.2830194572674e02, -2.6180e-6, 4.7199666e00, 8.3997091449254e03, -1.9780e-5, 1.9636505e-1, 8.4334662911720e03, -5.6044e-5, 4.1547339e00, 5.2993466764997e01, 5.8845e-6, 4.6524223e00, 2.1354275911213e01, 5.6797e-6, 4.2620486e00, 7.5025342197656e00, 5.5317e-6, 1.4740694e00, 3.8377331909193e00, 5.6093e-6]) dcfel = reshape(dcfel, (8, 3)) #constants dceps and ccsel(i,k) of slowly changing elements. dceps = array([4.093198e-1, -2.271110e-4, -2.860401e-8]) ccsel = array([1.675104e-2, -4.179579e-5, -1.260516e-7, 2.220221e-1, 2.809917e-2, 1.852532e-5, 1.589963e00, 3.418075e-2, 1.430200e-5, 2.994089e00, 2.590824e-2, 4.155840e-6, 8.155457e-1, 2.486352e-2, 6.836840e-6, 1.735614e00, 1.763719e-2, 6.370440e-6, 1.968564e00, 1.524020e-2, -2.517152e-6, 1.282417e00, 8.703393e-3, 2.289292e-5, 2.280820e00, 1.918010e-2, 4.484520e-6, 4.833473e-2, 1.641773e-4, -4.654200e-7, 5.589232e-2, -3.455092e-4, -7.388560e-7, 4.634443e-2, -2.658234e-5, 7.757000e-8, 8.997041e-3, 6.329728e-6, -1.939256e-9, 2.284178e-2, -9.941590e-5, 6.787400e-8, 4.350267e-2, -6.839749e-5, -2.714956e-7, 1.348204e-2, 1.091504e-5, 6.903760e-7, 3.106570e-2, -1.665665e-4, -1.590188e-7]) ccsel = reshape(ccsel, (17, 3)) #Constants of the arguments of the short-period perturbations. dcargs = array([5.0974222e0, -7.8604195454652e2, 3.9584962e0, -5.7533848094674e2, 1.6338070e0, -1.1506769618935e3, 2.5487111e0, -3.9302097727326e2, 4.9255514e0, -5.8849265665348e2, 1.3363463e0, -5.5076098609303e2, 1.6072053e0, -5.2237501616674e2, 1.3629480e0, -1.1790629318198e3, 5.5657014e0, -1.0977134971135e3, 5.0708205e0, -1.5774000881978e2, 3.9318944e0, 5.2963464780000e1, 4.8989497e0, 3.9809289073258e1, 1.3097446e0, 7.7540959633708e1, 3.5147141e0, 7.9618578146517e1, 3.5413158e0, -5.4868336758022e2]) dcargs = reshape(dcargs, (15, 2)) #Amplitudes ccamps(n,k) of the short-period perturbations. ccamps = array([-2.279594e-5, 1.407414e-5, 8.273188e-6, 1.340565e-5, -2.490817e-7, -3.494537e-5, 2.860401e-7, 1.289448e-7, 1.627237e-5, -1.823138e-7, 6.593466e-7, 1.322572e-5, 9.258695e-6, -4.674248e-7, -3.646275e-7, 1.140767e-5, -2.049792e-5, -4.747930e-6, -2.638763e-6, -1.245408e-7, 9.516893e-6, -2.748894e-6, -1.319381e-6, -4.549908e-6, -1.864821e-7, 7.310990e-6, -1.924710e-6, -8.772849e-7, -3.334143e-6, -1.745256e-7, -2.603449e-6, 7.359472e-6, 3.168357e-6, 1.119056e-6, -1.655307e-7, -3.228859e-6, 1.308997e-7, 1.013137e-7, 2.403899e-6, -3.736225e-7, 3.442177e-7, 2.671323e-6, 1.832858e-6, -2.394688e-7, -3.478444e-7, 8.702406e-6, -8.421214e-6, -1.372341e-6, -1.455234e-6, -4.998479e-8, -1.488378e-6, -1.251789e-5, 5.226868e-7, -2.049301e-7, 0.e0, -8.043059e-6, -2.991300e-6, 1.473654e-7, -3.154542e-7, 0.e0, 3.699128e-6, -3.316126e-6, 2.901257e-7, 3.407826e-7, 0.e0, 2.550120e-6, -1.241123e-6, 9.901116e-8, 2.210482e-7, 0.e0, -6.351059e-7, 2.341650e-6, 1.061492e-6, 2.878231e-7, 0.e0]) ccamps = reshape(ccamps, (15, 5)) #Constants csec3 and ccsec(n,k) of the secular perturbations in longitude. ccsec3 = -7.757020e-8 ccsec = array([1.289600e-6, 5.550147e-1, 2.076942e00, 3.102810e-5, 4.035027e00, 3.525565e-1, 9.124190e-6, 9.990265e-1, 2.622706e00, 9.793240e-7, 5.508259e00, 1.559103e01]) ccsec = reshape(ccsec, (4, 3)) #Sidereal rates. dcsld = 1.990987e-7 #sidereal rate in longitude ccsgd = 1.990969e-7 #sidereal rate in mean anomaly #Constants used in the calculation of the lunar contribution. cckm = 3.122140e-5 ccmld = 2.661699e-6 ccfdi = 2.399485e-7 #Constants dcargm(i,k) of the arguments of the perturbations of the motion # of the moon. dcargm = array([5.1679830e0, 8.3286911095275e3, 5.4913150e0, -7.2140632838100e3, 5.9598530e0, 1.5542754389685e4]) dcargm = reshape(dcargm, (3, 2)) #Amplitudes ccampm(n,k) of the perturbations of the moon. ccampm = array([1.097594e-1, 2.896773e-7, 5.450474e-2, 1.438491e-7, -2.223581e-2, 5.083103e-8, 1.002548e-2, -2.291823e-8, 1.148966e-2, 5.658888e-8, 8.249439e-3, 4.063015e-8]) ccampm = reshape(ccampm, (3, 4)) #ccpamv(k)=a*m*dl,dt (planets), dc1mme=1-mass(earth+moon) ccpamv = array([8.326827e-11, 1.843484e-11, 1.988712e-12, 1.881276e-12]) dc1mme = 0.99999696e0 #Time arguments. dt = (dje - dcto) / dcjul tvec = array([1e0, dt, dt * dt]) #Values of all elements for the instant(aneous?) dje. temp = (transpose(dot(transpose(tvec), transpose(dcfel)))) % dc2pi dml = temp[0] forbel = temp[1:8] g = forbel[0] #old fortran equivalence deps = (tvec * dceps).sum() % dc2pi sorbel = (transpose(dot(transpose(tvec), transpose(ccsel)))) % dc2pi e = sorbel[0] #old fortran equivalence #Secular perturbations in longitude. dummy = cos(2.0) sn = sin((transpose(dot(transpose(tvec[0:2]), transpose(ccsec[:,1:3])))) % cc2pi) #Periodic perturbations of the emb (earth-moon barycenter). pertl = (ccsec[:,0] * sn).sum() + dt * ccsec3 * sn[2] pertld = 0.0 pertr = 0.0 pertrd = 0.0 for k in range(0, 15): a = (dcargs[k,0] + dt * dcargs[k,1]) % dc2pi cosa = cos(a) sina = sin(a) pertl = pertl + ccamps[k,0] * cosa + ccamps[k,1] * sina pertr = pertr + ccamps[k,2] * cosa + ccamps[k,3] * sina if k < 11: pertld = pertld + (ccamps[k,1] * cosa - ccamps[k,0] * sina) * ccamps[k,4] pertrd = pertrd + (ccamps[k,3] * cosa - ccamps[k,2] * sina) * ccamps[k,4] #Elliptic part of the motion of the emb. phi = (e * e / 4e0) * (((8e0 / e) - e) * sin(g) + 5 * sin(2 * g) + (13 / 3e0) * e * sin(3 * g)) f = g + phi sinf = sin(f) cosf = cos(f) dpsi = (dc1 - e * e) / (dc1 + e * cosf) phid = 2 * e * ccsgd * ((1 + 1.5 * e * e) * cosf + e * (1.25 - 0.5 * sinf * sinf)) psid = ccsgd * e * sinf / sqrt(dc1 - e * e) #Perturbed heliocentric motion of the emb. d1pdro = dc1 + pertr drd = d1pdro * (psid + dpsi * pertrd) drld = d1pdro * dpsi * (dcsld + phid + pertld) dtl = (dml + phi + pertl) % dc2pi dsinls = sin(dtl) dcosls = cos(dtl) dxhd = drd * dcosls - drld * dsinls dyhd = drd * dsinls + drld * dcosls #Influence of eccentricity, evection and variation on the geocentric # motion of the moon. pertl = 0.0 pertld = 0.0 pertp = 0.0 pertpd = 0.0 for k in range(0, 3): a = (dcargm[k,0] + dt * dcargm[k,1]) % dc2pi sina = sin(a) cosa = cos(a) pertl = pertl + ccampm[k,0] * sina pertld = pertld + ccampm[k,1] * cosa pertp = pertp + ccampm[k,2] * cosa pertpd = pertpd - ccampm[k,3] * sina #Heliocentric motion of the earth. tl = forbel[1] + pertl sinlm = sin(tl) coslm = cos(tl) sigma = cckm / (1.0 + pertp) a = sigma * (ccmld + pertld) b = sigma * pertpd dxhd = dxhd + a * sinlm + b * coslm dyhd = dyhd - a * coslm + b * sinlm dzhd = -sigma * ccfdi * cos(forbel[2]) #Barycentric motion of the earth. dxbd = dxhd * dc1mme dybd = dyhd * dc1mme dzbd = dzhd * dc1mme for k in range(0, 4): plon = forbel[k + 3] pomg = sorbel[k + 1] pecc = sorbel[k + 9] tl = (plon + 2.0 * pecc * sin(plon - pomg)) % cc2pi dxbd = dxbd + ccpamv[k] * (sin(tl) + pecc * sin(pomg)) dybd = dybd - ccpamv[k] * (cos(tl) + pecc * cos(pomg)) dzbd = dzbd - ccpamv[k] * sorbel[k + 13] * cos(plon - sorbel[k + 5]) #Transition to mean equator of date. dcosep = cos(deps) dsinep = sin(deps) dyahd = dcosep * dyhd - dsinep * dzhd dzahd = dsinep * dyhd + dcosep * dzhd dyabd = dcosep * dybd - dsinep * dzbd dzabd = dsinep * dybd + dcosep * dzbd #Epoch of mean equinox (deq) of zero implies that we should use # Julian ephemeris date (dje) as epoch of mean equinox. if deq == 0: dvelh = au * (array([dxhd, dyahd, dzahd])) dvelb = au * (array([dxbd, dyabd, dzabd])) return (dvelh,dvelb) #General precession from epoch dje to deq. deqdat = (dje - dcto - dcbes) / dctrop + dc1900 prema = premat(deqdat, deq, fk4=True) dvelh = au * (transpose(dot(transpose(prema), transpose(array([dxhd, dyahd, dzahd]))))) dvelb = au * (transpose(dot(transpose(prema), transpose(array([dxbd, dyabd, dzabd]))))) return (dvelh, dvelb)
[docs]def bprecess(ra0, dec0, mu_radec=None, parallax=None, rad_vel=None, epoch=None): """ NAME: BPRECESS PURPOSE: Precess positions from J2000.0 (FK5) to B1950.0 (FK4) EXPLANATION: Calculates the mean place of a star at B1950.0 on the FK4 system from the mean place at J2000.0 on the FK5 system. CALLING SEQUENCE: bprecess, ra, dec, ra_1950, dec_1950, [ MU_RADEC = , PARALLAX = RAD_VEL =, EPOCH = ] INPUTS: RA,DEC - Input J2000 right ascension and declination in *degrees*. Scalar or N element vector OUTPUTS: RA_1950, DEC_1950 - The corresponding B1950 right ascension and declination in *degrees*. Same number of elements as RA,DEC but always double precision. OPTIONAL INPUT-OUTPUT KEYWORDS MU_RADEC - 2xN element double precision vector containing the proper motion in seconds of arc per tropical *century* in right ascension and declination. PARALLAX - N_element vector giving stellar parallax (seconds of arc) RAD_VEL - N_element vector giving radial velocity in km/s The values of MU_RADEC, PARALLAX, and RADVEL will all be modified upon output to contain the values of these quantities in the B1950 system. The parallax and radial velocity will have a very minor influence on the B1950 position. EPOCH - scalar giving epoch of original observations, default 2000.0d This keyword value is only used if the MU_RADEC keyword is not set. NOTES: The algorithm is taken from the Explanatory Supplement to the Astronomical Almanac 1992, page 186. Also see Aoki et al (1983), A&A, 128,263 BPRECESS distinguishes between the following two cases: (1) The proper motion is known and non-zero (2) the proper motion is unknown or known to be exactly zero (i.e. extragalactic radio sources). In this case, the reverse of the algorithm in Appendix 2 of Aoki et al. (1983) is used to ensure that the output proper motion is exactly zero. Better precision can be achieved in this case by inputting the EPOCH of the original observations. The error in using the IDL procedure PRECESS for converting between B1950 and J1950 can be up to 12", mainly in right ascension. If better accuracy than this is needed then BPRECESS should be used. An unsystematic comparison of BPRECESS with the IPAC precession routine (http://nedwww.ipac.caltech.edu/forms/calculator.html) always gives differences less than 0.15". EXAMPLE: The SAO2000 catalogue gives the J2000 position and proper motion for the star HD 119288. Find the B1950 position. RA(2000) = 13h 42m 12.740s Dec(2000) = 8d 23' 17.69'' Mu(RA) = -.0257 s/yr Mu(Dec) = -.090 ''/yr IDL> mu_radec = 100D* [ -15D*.0257, -0.090 ] IDL> ra = ten(13, 42, 12.740)*15.D IDL> dec = ten(8, 23, 17.69) IDL> bprecess, ra, dec, ra1950, dec1950, mu_radec = mu_radec IDL> print, adstring(ra1950, dec1950,2) ===> 13h 39m 44.526s +08d 38' 28.63" REVISION HISTORY: Written, W. Landsman October, 1992 Vectorized, W. Landsman February, 1994 Treat case where proper motion not known or exactly zero November 1994 Handling of arrays larger than 32767 Lars L. Christensen, march, 1995 Converted to IDL V5.0 W. Landsman September 1997 Fixed bug where A term not initialized for vector input W. Landsman February 2000 Converted to python Sergey Koposov july 2010 """ scal = True if isinstance(ra0, ndarray): ra = ra0 dec = dec0 n = ra.size scal = False else: n = 1 ra = array([ra0]) dec = array([dec0]) if rad_vel is None: rad_vel = zeros(n) else: if not isinstance(rad_vel, ndarray): rad_vel = array([rad_vel],dtype=float) if rad_vel.size != n: raise Exception('ERROR - RAD_VEL keyword vector must be of the same length as RA and DEC') if (mu_radec is not None): if (array(mu_radec).size != 2 * n): raise Exception('ERROR - MU_RADEC keyword (proper motion) be dimensioned (2,' + strtrim(n, 2) + ')') mu_radec = mu_radec * 1. if parallax is None: parallax = zeros(n) else: if not isinstance(parallax, ndarray): parallax = array([parallax],dtype=float) if epoch is None: epoch = 2000.0e0 radeg = 180.e0 / pi sec_to_radian = lambda x : deg2rad(x/3600.) m = array([array([+0.9999256795e0, -0.0111814828e0, -0.0048590040e0, -0.000551e0, -0.238560e0, +0.435730e0]), array([+0.0111814828e0, +0.9999374849e0, -0.0000271557e0, +0.238509e0, -0.002667e0, -0.008541e0]), array([+0.0048590039e0, -0.0000271771e0, +0.9999881946e0, -0.435614e0, +0.012254e0, +0.002117e0]), array([-0.00000242389840e0, +0.00000002710544e0, +0.00000001177742e0, +0.99990432e0, -0.01118145e0, -0.00485852e0]), array([-0.00000002710544e0, -0.00000242392702e0, +0.00000000006585e0, +0.01118145e0, +0.99991613e0, -0.00002716e0]), array([-0.00000001177742e0, +0.00000000006585e0, -0.00000242404995e0, +0.00485852e0, -0.00002717e0, +0.99996684e0])]) a_dot = 1e-3 * array([1.244e0, -1.579e0, -0.660e0]) #in arc seconds per century ra_rad = deg2rad(ra) dec_rad = deg2rad(dec) cosra = cos(ra_rad) sinra = sin(ra_rad) cosdec = cos(dec_rad) sindec = sin(dec_rad) dec_1950 = dec * 0. ra_1950 = ra * 0. for i in range(n): # Following statement moved inside loop in Feb 2000. a = 1e-6 * array([-1.62557e0, -0.31919e0, -0.13843e0]) #in radians r0 = array([cosra[i] * cosdec[i], sinra[i] * cosdec[i], sindec[i]]) if (mu_radec is not None): mu_a = mu_radec[i,0] mu_d = mu_radec[i,1] r0_dot = array([-mu_a * sinra[i] * cosdec[i] - mu_d * cosra[i] * sindec[i], mu_a * cosra[i] * cosdec[i] - mu_d * sinra[i] * sindec[i], mu_d * cosdec[i]]) + 21.095e0 * rad_vel[i] * parallax[i] * r0 else: r0_dot = array([0.0e0, 0.0e0, 0.0e0]) r_0 = concatenate((r0, r0_dot)) r_1 = transpose(dot(transpose(m), transpose(r_0))) # Include the effects of the E-terms of aberration to form r and r_dot. r1 = r_1[0:3] r1_dot = r_1[3:6] if mu_radec is None: r1 = r1 + sec_to_radian ( r1_dot * (epoch - 1950.0e0) / 100. ) a = a + sec_to_radian ( a_dot * (epoch - 1950.0e0) / 100. ) x1 = r_1[0] ; y1 = r_1[1] ; z1 = r_1[2] rmag = sqrt(x1 ** 2 + y1 ** 2 + z1 ** 2) s1 = r1 / rmag ; s1_dot = r1_dot / rmag s = s1 for j in arange(0, 3): r = s1 + a - ((s * a).sum()) * s s = r / rmag x = r[0] ; y = r[1] ; z = r[2] r2 = x ** 2 + y ** 2 + z ** 2 rmag = sqrt(r2) if mu_radec is not None: r_dot = s1_dot + a_dot - ((s * a_dot).sum()) * s x_dot = r_dot[0] ; y_dot = r_dot[1] ; z_dot = r_dot[2] mu_radec[i,0] = (x * y_dot - y * x_dot) / (x ** 2 + y ** 2) mu_radec[i,1] = (z_dot * (x ** 2 + y ** 2) - z * (x * x_dot + y * y_dot)) / (r2 * sqrt(x ** 2 + y ** 2)) dec_1950[i] = arcsin(z / rmag) ra_1950[i] = arctan2(y, x) if parallax[i] > 0.: rad_vel[i] = (x * x_dot + y * y_dot + z * z_dot) / (21.095 * parallax[i] * rmag) parallax[i] = parallax[i] / rmag neg = (ra_1950 < 0) if neg.any() > 0: ra_1950[neg] = ra_1950[neg] + 2.e0 * pi ra_1950 = rad2deg(ra_1950) dec_1950 = rad2deg(dec_1950) # Make output scalar if input was scalar if scal: return ra_1950[0],dec_1950[0] else: return ra_1950, dec_1950
[docs]def convolve(image, psf, ft_psf=None, ft_image=None, no_ft=None, correlate=None, auto_correlation=None): """ NAME: CONVOLVE PURPOSE: Convolution of an image with a Point Spread Function (PSF) EXPLANATION: The default is to compute the convolution using a product of Fourier transforms (for speed). CALLING SEQUENCE: imconv = convolve( image1, psf, FT_PSF = psf_FT ) or: correl = convolve( image1, image2, /CORREL ) or: correl = convolve( image, /AUTO ) INPUTS: image = 2-D array (matrix) to be convolved with psf psf = the Point Spread Function, (size < or = to size of image). OPTIONAL INPUT KEYWORDS: FT_PSF = passes out/in the Fourier transform of the PSF, (so that it can be re-used the next time function is called). FT_IMAGE = passes out/in the Fourier transform of image. /CORRELATE uses the conjugate of the Fourier transform of PSF, to compute the cross-correlation of image and PSF, (equivalent to IDL function convol() with NO rotation of PSF) /AUTO_CORR computes the auto-correlation function of image using FFT. /NO_FT overrides the use of FFT, using IDL function convol() instead. (then PSF is rotated by 180 degrees to give same result) METHOD: When using FFT, PSF is centered & expanded to size of image. HISTORY: written, Frank Varosi, NASA/GSFC 1992. Appropriate precision type for result depending on input image Markus Hundertmark February 2006 Fix the bug causing the recomputation of FFT(psf) and/or FFT(image) Sergey Koposov December 2006 """ from numpy.fft import fft2, ifft2 n_params = 2 psf_ft = ft_psf imft = ft_image noft = no_ft auto = auto_correlation sp = array(shape(psf_ft)) sif = array(shape(imft)) sim = array(shape(image)) sc = sim / 2 npix = array(image, copy=0).size if image.ndim!=2 or noft!=None: if (auto is not None): message("auto-correlation only for images with FFT", inf=True) return image else: if (correlate is not None): return convol(image, psf) else: return convol(image, rotate(psf, 2)) if imft==None or (imft.ndim!=2) or imft.shape!=im.shape: #add the type check imft = ifft2(image) if (auto is not None): return roll(roll(npix * real(fft2(imft * conjugate(imft))), sc[0], 0),sc[1],1) if (ft_psf==None or ft_psf.ndim!=2 or ft_psf.shape!=image.shape or ft_psf.dtype!=image.dtype): sp = array(shape(psf)) loc = maximum((sc - sp / 2), 0) #center PSF in new array, s = maximum((sp / 2 - sc), 0) #handle all cases: smaller or bigger l = minimum((s + sim - 1), (sp - 1)) psf_ft = conjugate(image) * 0 #initialise with correct size+type according #to logic of conj and set values to 0 (type of ft_psf is conserved) psf_ft[loc[1]:loc[1]+l[1]-s[1]+1,loc[0]:loc[0]+l[0]-s[0]+1] = \ psf[s[1]:(l[1])+1,s[0]:(l[0])+1] psf_ft = ifft2(psf_ft) if (correlate is not None): conv = npix * real(fft2(imft * conjugate(psf_ft))) else: conv = npix * real(fft2(imft * psf_ft)) sc = sc + (sim % 2) #shift correction for odd size images. return roll(roll(conv, sc[0],0), sc[1],1)
def cv_coord(a,b,c,fr=None,to=None,degr=False): import numpy if degr: degrad = numpy.deg2rad raddeg = numpy.rad2deg else: degrad = lambda x: x raddeg = lambda x: x if fr=='sph': cosa = numpy.cos(degrad(a)) sina = numpy.sin(degrad(a)) cosb = numpy.cos(degrad(b)) sinb = numpy.sin(degrad(b)) x=c*cosa*cosb y=c*sina*cosb z=c*sinb elif fr=='rect': x=a y=b z=c elif fr is None: raise Exception('You must specify the input coordinate system') else: raise Exception('Unknown input coordinate system') if to=='rect': return (x,y,z) elif to=='sph': ra = raddeg(numpy.arctan2(y,x)) dec = raddeg(numpy.arctan2(z,numpy.sqrt(x**2+y**2))) rad = numpy.sqrt(x**2+y**2+z**2) return (ra,dec,rad) elif to is None: raise Exception('You must specify the output coordinate system') else: raise Exception('Unknown output coordinate system')
[docs]def daycnv(xjd): """ NAME: DAYCNV PURPOSE: Converts Julian dates to Gregorian calendar dates CALLING SEQUENCE: DAYCNV, XJD, YR, MN, DAY, HR INPUTS: XJD = Julian date, positive double precision scalar or vector OUTPUTS: YR = Year (Integer) MN = Month (Integer) DAY = Day (Integer) HR = Hours and fractional hours (Real). If XJD is a vector, then YR,MN,DAY and HR will be vectors of the same length. EXAMPLE: IDL> DAYCNV, 2440000.D, yr, mn, day, hr yields yr = 1968, mn =5, day = 23, hr =12. WARNING: Be sure that the Julian date is specified as double precision to maintain accuracy at the fractional hour level. METHOD: Uses the algorithm of Fliegel and Van Flandern (1968) as reported in the "Explanatory Supplement to the Astronomical Almanac" (1992), p. 604 Works for all Gregorian calendar dates with XJD > 0, i.e., dates after -4713 November 23. REVISION HISTORY: Converted to IDL from Yeoman's Comet Ephemeris Generator, B. Pfarr, STX, 6/16/88 Converted to IDL V5.0 W. Landsman September 1997 """ # Adjustment needed because Julian day starts at noon, calendar day at midnight jd = array(xjd).astype(int) #Truncate to integral day frac = array(xjd).astype(float) - jd + 0.5 #Fractional part of calendar day after_noon = (frac >= 1.0) if after_noon.any(): #Is it really the next calendar day? if frac.ndim>0: # proper array frac[after_noon] = frac[after_noon] - 1.0 jd[after_noon] = jd[after_noon] + 1 else: # scalar frac = frac - 1.0 jd = jd + 1 hr = frac * 24.0 l = jd + 68569 n = 4 * l / 146097 l = l - (146097 * n + 3) / 4 yr = 4000 * (l + 1) / 1461001 l = l - 1461 * yr / 4 + 31 #1461 = 365.25 * 4 mn = 80 * l / 2447 day = l - 2447 * mn / 80 l = mn / 11 mn = mn + 2 - 12 * l yr = 100 * (n - 49) + yr + l return (yr, mn, day, hr)
[docs]def euler(ai, bi, select=1, fk4=False): """ NAME: EULER PURPOSE: Transform between Galactic, celestial, and ecliptic coordinates. EXPLANATION: Use the procedure ASTRO to use this routine interactively CALLING SEQUENCE: AO, BO = EULER(AI, BI, [SELECT=1, FK4=False]) INPUTS: AI - Input Longitude in DEGREES, scalar or vector. If only two parameters are supplied, then AI and BI will be modified to contain the output longitude and latitude. BI - Input Latitude in DEGREES OPTIONAL INPUT: SELECT - Integer (1-6) specifying type of coordinate transformation. SELECT From To | SELECT From To 1 RA-Dec (2000) Galactic | 4 Ecliptic RA-Dec 2 Galactic RA-DEC | 5 Ecliptic Galactic 3 RA-Dec Ecliptic | 6 Galactic Ecliptic If not supplied as a parameter or keyword, then EULER will prompt for the value of SELECT Celestial coordinates (RA, Dec) should be given in equinox J2000 unless the /FK4 keyword is set. OUTPUTS: AO - Output Longitude in DEGREES BO - Output Latitude in DEGREES INPUT KEYWORD: /FK4 - If this keyword is set and non-zero, then input and output celestial and ecliptic coordinates should be given in equinox B1950. /SELECT - The coordinate conversion integer (1-6) may alternatively be specified as a keyword NOTES: EULER was changed in December 1998 to use J2000 coordinates as the default, ** and may be incompatible with earlier versions***. REVISION HISTORY: Written W. Landsman, February 1987 Adapted from Fortran by Daryl Yentis NRL Converted to IDL V5.0 W. Landsman September 1997 Made J2000 the default, added /FK4 keyword W. Landsman December 1998 Add option to specify SELECT as a keyword W. Landsman March 2003 """ import numpy twopi = 2.0e0 * numpy.pi fourpi = 4.0e0 * numpy.pi # J2000 coordinate conversions are based on the following constants # (see the Hipparcos explanatory supplement). # eps = 23.4392911111d Obliquity of the ecliptic # alphaG = 192.85948d Right Ascension of Galactic North Pole # deltaG = 27.12825d Declination of Galactic North Pole # lomega = 32.93192d Galactic longitude of celestial equator # alphaE = 180.02322d Ecliptic longitude of Galactic North Pole # deltaE = 29.811438523d Ecliptic latitude of Galactic North Pole # Eomega = 6.3839743d Galactic longitude of ecliptic equator if fk4: equinox = '(B1950)' psi = numpy.array ([0.57595865315e0, 4.9261918136e0, 0.00000000000e0, 0.0000000000e0, 0.11129056012e0, 4.7005372834e0]) stheta = numpy.array ([0.88781538514e0, -0.88781538514e0, 0.39788119938e0, -0.39788119938e0, 0.86766174755e0, -0.86766174755e0]) ctheta = numpy.array([0.46019978478e0, 0.46019978478e0, 0.91743694670e0, 0.91743694670e0, 0.49715499774e0, 0.49715499774e0]) phi = numpy.array([4.9261918136e0, 0.57595865315e0, 0.0000000000e0, 0.00000000000e0, 4.7005372834e0, 0.11129056012e0]) else: equinox = '(J2000)' psi = numpy.array([0.57477043300e0, 4.9368292465e0, 0.00000000000e0, 0.0000000000e0, 0.11142137093e0, 4.71279419371e0]) stheta = numpy.array([0.88998808748e0, -0.88998808748e0, 0.39777715593e0, -0.39777715593e0, 0.86766622025e0, -0.86766622025e0]) ctheta = numpy.array([0.45598377618e0, 0.45598377618e0, 0.91748206207e0, 0.91748206207e0, 0.49714719172e0, 0.49714719172e0]) phi = numpy.array([4.9368292465e0, 0.57477043300e0, 0.0000000000e0, 0.00000000000e0, 4.71279419371e0, 0.11142137093e0]) i = select - 1 a = numpy.deg2rad(ai) - phi[i] b = numpy.deg2rad(bi) sb = numpy.sin(b) cb = numpy.cos(b) cbsa = cb * numpy.sin(a) b = -stheta[i] * cbsa + ctheta[i] * sb bo = numpy.rad2deg(numpy.arcsin(numpy.minimum(b, 1.0))) del b a = numpy.arctan2(ctheta[i] * cbsa + stheta[i] * sb, cb * numpy.cos(a)) del cb, cbsa, sb ao = numpy.rad2deg(((a + psi[i] + fourpi) % twopi) ) return (ao, bo)
[docs]def gal_uvw(distance=None, lsr=None, ra=None, dec=None, pmra=None, pmdec=None, vrad=None, plx=None): """ NAME: GAL_UVW PURPOSE: Calculate the Galactic space velocity (U,V,W) of star EXPLANATION: Calculates the Galactic space velocity U, V, W of star given its (1) coordinates, (2) proper motion, (3) distance (or parallax), and (4) radial velocity. CALLING SEQUENCE: GAL_UVW [/LSR, RA=, DEC=, PMRA= ,PMDEC=, VRAD= , DISTANCE= PLX= ] OUTPUT PARAMETERS: U - Velocity (km/s) positive toward the Galactic *anti*center V - Velocity (km/s) positive in the direction of Galactic rotation W - Velocity (km/s) positive toward the North Galactic Pole REQUIRED INPUT KEYWORDS: User must supply a position, proper motion,radial velocity and distance (or parallax). Either scalars or vectors can be supplied. (1) Position: RA - Right Ascension in *Degrees* Dec - Declination in *Degrees* (2) Proper Motion PMRA = Proper motion in RA in arc units (typically milli-arcseconds/yr) PMDEC = Proper motion in Declination (typically mas/yr) (3) Radial Velocity VRAD = radial velocity in km/s (4) Distance or Parallax DISTANCE - distance in parsecs or PLX - parallax with same distance units as proper motion measurements typically milliarcseconds (mas) OPTIONAL INPUT KEYWORD: /LSR - If this keyword is set, then the output velocities will be corrected for the solar motion (U,V,W)_Sun = (-10.00,+5.25,+7.17) (Dehnen & Binney, 1998) to the local standard of rest EXAMPLE: (1) Compute the U,V,W coordinates for the halo star HD 6755. Use values from Hipparcos catalog, and correct to the LSR ra = ten(1,9,42.3)*15. & dec = ten(61,32,49.5) pmra = 627.89 & pmdec = 77.84 ;mas/yr dis = 144 & vrad = -321.4 gal_uvw,u,v,w,ra=ra,dec=dec,pmra=pmra,pmdec=pmdec,vrad=vrad,dis=dis,/lsr ===> u=154 v = -493 w = 97 ;km/s (2) Use the Hipparcos Input and Output Catalog IDL databases (see http://idlastro.gsfc.nasa.gov/ftp/zdbase/) to obtain space velocities for all stars within 10 pc with radial velocities > 10 km/s dbopen,'hipparcos,hic' ;Need Hipparcos output and input catalogs list = dbfind('plx>100,vrad>10') ;Plx > 100 mas, Vrad > 10 km/s dbext,list,'pmra,pmdec,vrad,ra,dec,plx',pmra,pmdec,vrad,ra,dec,plx ra = ra*15. ;Need right ascension in degrees GAL_UVW,u,v,w,ra=ra,dec=dec,pmra=pmra,pmdec=pmdec,vrad=vrad,plx = plx forprint,u,v,w ;Display results METHOD: Follows the general outline of Johnson & Soderblom (1987, AJ, 93,864) except that U is positive outward toward the Galactic *anti*center, and the J2000 transformation matrix to Galactic coordinates is taken from the introduction to the Hipparcos catalog. REVISION HISTORY: Written, W. Landsman December 2000 fix the bug occuring if the input arrays are longer than 32767 and update the Sun velocity Sergey Koposov June 2008 vectorization of the loop -- performance on large arrays is now 10 times higher Sergey Koposov December 2008 """ import numpy n_params = 3 if n_params == 0: print 'Syntax - GAL_UVW, U, V, W, [/LSR, RA=, DEC=, PMRA= ,PMDEC=, VRAD=' print ' Distance=, PLX=' print ' U, V, W - output Galactic space velocities (km/s)' return None if ra is None or dec is None: raise Exception('ERROR - The RA, Dec (J2000) position keywords must be supplied (degrees)') if plx is None and distance is None: raise Exception('ERROR - Either a parallax or distance must be specified') if distance is not None: if numpy.any(distance==0): raise Exception('ERROR - All distances must be > 0') plx = 1e3 / distance #Parallax in milli-arcseconds if plx is not None and numpy.any(plx==0): raise Exception('ERROR - Parallaxes must be > 0') cosd = numpy.cos(numpy.deg2rad(dec)) sind = numpy.sin(numpy.deg2rad(dec)) cosa = numpy.cos(numpy.deg2rad(ra)) sina = numpy.sin(numpy.deg2rad(ra)) k = 4.74047 #Equivalent of 1 A.U/yr in km/s a_g = numpy.array([[0.0548755604, +0.4941094279, -0.8676661490], [0.8734370902, -0.4448296300, -0.1980763734], [0.4838350155, 0.7469822445, +0.4559837762]]) vec1 = vrad vec2 = k * pmra / plx vec3 = k * pmdec / plx u = (a_g[0,0] * cosa * cosd + a_g[1,0] * sina * cosd + a_g[2,0] * sind) * vec1 + (-a_g[0,0] * sina + a_g[1,0] * cosa) * vec2 + (-a_g[0,0] * cosa * sind - a_g[1,0] * sina * sind + a_g[2,0] * cosd) * vec3 v = (a_g[0,1] * cosa * cosd + a_g[1,1] * sina * cosd + a_g[2,1] * sind) * vec1 + (-a_g[0,1] * sina + a_g[1,1] * cosa) * vec2 + (-a_g[0,1] * cosa * sind - a_g[1,1] * sina * sind + a_g[2,1] * cosd) * vec3 w = (a_g[0,2] * cosa * cosd + a_g[1,2] * sina * cosd + a_g[2,2] * sind) * vec1 + (-a_g[0,2] * sina + a_g[1,2] * cosa) * vec2 + (-a_g[0,2] * cosa * sind - a_g[1,2] * sina * sind + a_g[2,2] * cosd) * vec3 lsr_vel = numpy.array([-10.00, 5.25, 7.17]) if (lsr is not None): u = u + lsr_vel[0] v = v + lsr_vel[1] w = w + lsr_vel[2] return (u,v,w) #def helcorr(obs_long, obs_lat, obs_alt, ra2000, dec2000, jd, debug=False): # """ # calculates heliocentric Julian date, baricentric and heliocentric radial # velocity corrections from: # # INPUT: # <OBSLON> Longitude of observatory (degrees, western direction is positive) # <OBSLAT> Latitude of observatory (degrees) # <OBSALT> Altitude of observatory (meters) # <RA2000> Right ascension of object for epoch 2000.0 (hours) # <DE2000> Declination of object for epoch 2000.0 (degrees) # <JD> Julian date for the middle of exposure # [DEBUG=] set keyword to get additional results for debugging # # OUTPUT: # <CORRECTION> baricentric correction - correction for rotation of earth, # rotation of earth center about the eart-moon barycenter, eart-moon # barycenter about the center of the Sun. # <HJD> Heliocentric Julian date for middle of exposure # # Algorithms used are taken from the IRAF task noao.astutils.rvcorrect # and some procedures of the IDL Astrolib are used as well. # Accuracy is about 0.5 seconds in time and about 1 m/s in velocity. # # History: # written by Peter Mittermayer, Nov 8,2003 # 2005-January-13 Kudryavtsev Made more accurate calculation of the sideral time. # Conformity with MIDAS compute/barycorr is checked. # 2005-June-20 Kochukhov Included precession of RA2000 and DEC2000 to current epoch # """ # # _radeg = 180.0 / pi # # # #covert JD to Gregorian calendar date # xjd = array(2400000.).astype(float) + jd # year,month,day,ut=daycnv(xjd) # # #current epoch # epoch = year + month / 12. + day / 365. # # #precess ra2000 and dec2000 to current epoch # ra,dec=precess(ra2000*15., dec2000, 2000.0, epoch) # #calculate heliocentric julian date # hjd = array(helio_jd(jd, ra, dec)).astype(float) # # #DIURNAL VELOCITY (see IRAF task noao.astutil.rvcorrect) # #convert geodetic latitude into geocentric latitude to correct # #for rotation of earth # dlat = -(11. * 60. + 32.743) * sin(2 * obs_lat / _radeg) + 1.1633 * sin(4 * obs_lat / _radeg) - 0.0026 * sin(6 * obs_lat / _radeg) # lat = obs_lat + dlat / 3600 # # #calculate distance of observer from earth center # r = 6378160.0 * (0.998327073 + 0.001676438 * cos(2 * lat / _radeg) - 0.00000351 * cos(4 * lat / _radeg) + 0.000000008 * cos(6 * lat / _radeg)) + obs_alt # # #calculate rotational velocity (perpendicular to the radius vector) in km/s # #23.934469591229 is the siderial day in hours for 1986 # v = 2. * pi * (r / 1000.) / (23.934469591229 * 3600.) # # #calculating local mean siderial time (see astronomical almanach) # tu = (jd - 51545.0) / 36525 # gmst = 6.697374558 + ut + (236.555367908 * (jd - 51545.0) + 0.093104 * tu ** 2 - 6.2e-6 * tu ** 3) / 3600 # lmst = (gmst - obs_long / 15) % 24 # # #projection of rotational velocity along the line of sight # vdiurnal = v * cos(lat / _radeg) * cos(dec / _radeg) * sin((ra - lmst * 15) / _radeg) # # #BARICENTRIC and HELIOCENTRIC VELOCITIES # vh,vb=baryvel(xjd, 0) # # #project to line of sight # vbar = vb[0] * cos(dec / _radeg) * cos(ra / _radeg) + vb[1] * cos(dec / _radeg) * sin(ra / _radeg) + vb[2] * sin(dec / _radeg) # vhel = vh[0] * cos(dec / _radeg) * cos(ra / _radeg) + vh[1] * cos(dec / _radeg) * sin(ra / _radeg) + vh[2] * sin(dec / _radeg) # # corr = (vdiurnal + vbar) #using baricentric velocity for correction # # if debug: # print '' # print '----- HELCORR.PRO - DEBUG INFO - START ----' # print '(obs_long,obs_lat,obs_alt) Observatory coordinates [deg,m]: ', obs_long, obs_lat, obs_alt # print '(ra,dec) Object coordinates (for epoch 2000.0) [deg]: ', ra, dec # print '(ut) Universal time (middle of exposure) [hrs]: ', ut#, format='(A,F20.12)' # print '(jd) Julian date (middle of exposure) (JD-2400000): ', jd#, format='(A,F20.12)' # print '(hjd) Heliocentric Julian date (middle of exposure) (HJD-2400000): ', hjd#, format='(A,F20.12)' # print '(gmst) Greenwich mean siderial time [hrs]: ', gmst % 24 # print '(lmst) Local mean siderial time [hrs]: ', lmst # print '(dlat) Latitude correction [deg]: ', dlat # print '(lat) Geocentric latitude of observer [deg]: ', lat # print '(r) Distance of observer from center of earth [m]: ', r # print '(v) Rotational velocity of earth at the position of the observer [km/s]: ', v # print '(vdiurnal) Projected earth rotation and earth-moon revolution [km/s]: ', vdiurnal # print '(vbar) Baricentric velocity [km/s]: ', vbar # print '(vhel) Heliocentric velocity [km/s]: ', vhel # print '(corr) Vdiurnal+vbar [km/s]: ', corr#, format='(A,F12.9)' # print '----- HELCORR.PRO - DEBUG INFO - END -----' # print '' # # # return (corr, hjd)
[docs]def helio_jd(date, ra, dec, b1950=False, time_diff=False): """ NAME: HELIO_JD PURPOSE: Convert geocentric (reduced) Julian date to heliocentric Julian date EXPLANATION: This procedure correct for the extra light travel time between the Earth and the Sun. An online calculator for this quantity is available at http://www.physics.sfasu.edu/astro/javascript/hjd.html CALLING SEQUENCE: jdhelio = HELIO_JD( date, ra, dec, /B1950, /TIME_DIFF) INPUTS date - reduced Julian date (= JD - 2400000), scalar or vector, MUST be double precision ra,dec - scalars giving right ascension and declination in DEGREES Equinox is J2000 unless the /B1950 keyword is set OUTPUTS: jdhelio - heliocentric reduced Julian date. If /TIME_DIFF is set, then HELIO_JD() instead returns the time difference in seconds between the geocentric and heliocentric Julian date. OPTIONAL INPUT KEYWORDS /B1950 - if set, then input coordinates are assumed to be in equinox B1950 coordinates. /TIME_DIFF - if set, then HELIO_JD() returns the time difference (heliocentric JD - geocentric JD ) in seconds EXAMPLE: What is the heliocentric Julian date of an observation of V402 Cygni (J2000: RA = 20 9 7.8, Dec = 37 09 07) taken June 15, 1973 at 11:40 UT? IDL> juldate, [1973,6,15,11,40], jd ;Get geocentric Julian date IDL> hjd = helio_jd( jd, ten(20,9,7.8)*15., ten(37,9,7) ) ==> hjd = 41848.9881 Wayne Warren (Raytheon ITSS) has compared the results of HELIO_JD with the FORTRAN subroutines in the STARLINK SLALIB library (see http://star-www.rl.ac.uk/). Time Diff (sec) Date RA(2000) Dec(2000) STARLINK IDL 1999-10-29T00:00:00.0 21 08 25. -67 22 00. -59.0 -59.0 1999-10-29T00:00:00.0 02 56 33.4 +00 26 55. 474.1 474.1 1940-12-11T06:55:00.0 07 34 41.9 -00 30 42. 366.3 370.2 1992-02-29T03:15:56.2 12 56 27.4 +42 10 17. 350.8 350.9 2000-03-01T10:26:31.8 14 28 36.7 -20 42 11. 243.7 243.7 2100-02-26T09:18:24.2 08 26 51.7 +85 47 28. 104.0 108.8 PROCEDURES CALLED: bprecess, xyz REVISION HISTORY: Algorithm from the book Astronomical Photometry by Henden, p. 114 Written, W. Landsman STX June, 1989 Make J2000 default equinox, add B1950, /TIME_DIFF keywords, compute variation of the obliquity W. Landsman November 1999 Converted to python Sergey Koposov July 2010 """ #Because XYZ uses default B1950 coordinates, we'll convert everything to B1950 if not b1950: ra1, dec1 = bprecess(ra, dec) else: ra1 = ra dec1 = dec delta_t = (array(date).astype(float) - 33282.42345905e0) / 36525.0e0 epsilon_sec = poly1d([44.836e0, -46.8495, -0.00429, 0.00181][::-1])(delta_t) epsilon = deg2rad(23.433333e0 + epsilon_sec / 3600.0e0) ra1 = deg2rad(ra1) dec1 = deg2rad(dec1) x, y, z, tmp, tmp, tmp = xyz(date) #Find extra distance light must travel in AU, multiply by 1.49598e13 cm/AU, #and divide by the speed of light, and multiply by 86400 second/year time = -499.00522e0 * (cos(dec1) * cos(ra1) * x + (tan(epsilon) * sin(dec1) + cos(dec1) * sin(ra1)) * y) if time_diff: return time else: return array(date).astype(float) + time / 86400.0e0
[docs]def mwrfits(filename, arraylist, namelist=None, header=None): """ Writes the list of numpy.arrays arraylist as a FITS table filename using namelist as list of names. Arraylist can be dictionary with arrays as values and names as keys. Also Arraylist can be numpy-record-array. Example: mwrfits('/tmp/xx.fits',[arr,arr1],['X','Y']) Or : mwrfits('test.fits',{'X':arr,'Y':arr1}) Or: data = numpy.zeros((4,),dtype=[('run','i4'),('rerun','f8'),('zz','b')]) mwfits('test1.fits',data) Keep in mind that when you used a dictionary, the order of columns in the fits file is not guaranteed """ import numpy, pyfits, types, itertools tmplist=[] if isinstance(arraylist,numpy.ndarray): if arraylist.dtype.type is numpy.void: iter=itertools.izip(arraylist.dtype.names, itertools.imap (arraylist.__getitem__ , arraylist.dtype.names)) else: if isinstance(arraylist,types.ListType): iter= zip(namelist, arraylist) elif isinstance(arraylist,types.DictType): iter= arraylist.iteritems() for name, arr in iter: if arr.dtype.type==numpy.int8: format='I' elif arr.dtype.type==numpy.int16: format='I' elif arr.dtype.type==numpy.int32: format='J' elif arr.dtype.type==numpy.int64: format='K' elif arr.dtype.type==numpy.float32: format='E' elif arr.dtype.type==numpy.float64: format='D' elif arr.dtype.type==numpy.string_: format='%dA'%arr.dtype.itemsize else: raise Exception("Oops unknown datatype %s"%arr.dtype) tmplist.append(pyfits.Column(name=name, array=arr, format=format)) hdu = pyfits.new_table(tmplist) hdu.writeto(filename,clobber=True)
[docs]def precess(ra0, dec0, equinox1, equinox2, doprint=False, fk4=False, radian=False): """ NAME: PRECESS PURPOSE: Precess coordinates from EQUINOX1 to EQUINOX2. EXPLANATION: For interactive display, one can use the procedure ASTRO which calls PRECESS or use the /PRINT keyword. The default (RA,DEC) system is FK5 based on epoch J2000.0 but FK4 based on B1950.0 is available via the /FK4 keyword. Use BPRECESS and JPRECESS to convert between FK4 and FK5 systems CALLING SEQUENCE: PRECESS, ra, dec, [ equinox1, equinox2, /PRINT, /FK4, /RADIAN ] INPUT - OUTPUT: RA - Input right ascension (scalar or vector) in DEGREES, unless the /RADIAN keyword is set DEC - Input declination in DEGREES (scalar or vector), unless the /RADIAN keyword is set The input RA and DEC are modified by PRECESS to give the values after precession. OPTIONAL INPUTS: EQUINOX1 - Original equinox of coordinates, numeric scalar. If omitted, then PRECESS will query for EQUINOX1 and EQUINOX2. EQUINOX2 - Equinox of precessed coordinates. OPTIONAL INPUT KEYWORDS: /PRINT - If this keyword is set and non-zero, then the precessed coordinates are displayed at the terminal. Cannot be used with the /RADIAN keyword /FK4 - If this keyword is set and non-zero, the FK4 (B1950.0) system will be used otherwise FK5 (J2000.0) will be used instead. /RADIAN - If this keyword is set and non-zero, then the input and output RA and DEC vectors are in radians rather than degrees RESTRICTIONS: Accuracy of precession decreases for declination values near 90 degrees. PRECESS should not be used more than 2.5 centuries from 2000 on the FK5 system (1950.0 on the FK4 system). EXAMPLES: (1) The Pole Star has J2000.0 coordinates (2h, 31m, 46.3s, 89d 15' 50.6"); compute its coordinates at J1985.0 IDL> precess, ten(2,31,46.3)*15, ten(89,15,50.6), 2000, 1985, /PRINT ====> 2h 16m 22.73s, 89d 11' 47.3" (2) Precess the B1950 coordinates of Eps Ind (RA = 21h 59m,33.053s, DEC = (-56d, 59', 33.053") to equinox B1975. IDL> ra = ten(21, 59, 33.053)*15 IDL> dec = ten(-56, 59, 33.053) IDL> precess, ra, dec ,1950, 1975, /fk4 PROCEDURE: Algorithm from Computational Spherical Astronomy by Taff (1983), p. 24. (FK4). FK5 constants from "Astronomical Almanac Explanatory Supplement 1992, page 104 Table 3.211.1. PROCEDURE CALLED: Function PREMAT - computes precession matrix REVISION HISTORY Written, Wayne Landsman, STI Corporation August 1986 Correct negative output RA values February 1989 Added /PRINT keyword W. Landsman November, 1991 Provided FK5 (J2000.0) I. Freedman January 1994 Precession Matrix computation now in PREMAT W. Landsman June 1994 Added /RADIAN keyword W. Landsman June 1997 Converted to IDL V5.0 W. Landsman September 1997 Correct negative output RA values when /RADIAN used March 1999 Work for arrays, not just vectors W. Landsman September 2003 Convert to Python Sergey Koposov July 2010 """ scal = True if isinstance(ra0, ndarray): ra = ra0.copy() dec = dec0.copy() scal = False else: ra=array([ra0]) dec=array([dec0]) npts = ra.size if not radian: ra_rad = deg2rad(ra) #Convert to double precision if not already dec_rad = deg2rad(dec) else: ra_rad = ra dec_rad = dec a = cos(dec_rad) x = zeros((npts, 3)) x[:,0] = a * cos(ra_rad) x[:,1] = a * sin(ra_rad) x[:,2] = sin(dec_rad) # Use PREMAT function to get precession matrix from Equinox1 to Equinox2 r = premat(equinox1, equinox2, fk4=fk4) x2 = transpose(dot(transpose(r), transpose(x))) #rotate to get output direction cosines ra_rad = zeros(npts) + arctan2(x2[:,1], x2[:,0]) dec_rad = zeros(npts) + arcsin(x2[:,2]) if not radian: ra = rad2deg(ra_rad) ra = ra + (ra < 0.) * 360.e0 #RA between 0 and 360 degrees dec = rad2deg(dec_rad) else: ra = ra_rad dec = dec_rad ra = ra + (ra < 0.) * 2.0e0 * pi if doprint: print 'Equinox (%.2f): %f,%f' % (equinox2, ra, dec) if scal: ra, dec = ra[0], dec[0] return ra, dec
[docs]def precess_xyz(x, y, z, equinox1, equinox2): """ + NAME: PRECESS_XYZ PURPOSE: Precess equatorial geocentric rectangular coordinates. CALLING SEQUENCE: precess_xyz, x, y, z, equinox1, equinox2 INPUT/OUTPUT: x,y,z: scalars or vectors giving heliocentric rectangular coordinates THESE ARE CHANGED UPON RETURNING. INPUT: EQUINOX1: equinox of input coordinates, numeric scalar EQUINOX2: equinox of output coordinates, numeric scalar OUTPUT: x,y,z are changed upon return NOTES: The equatorial geocentric rectangular coords are converted to RA and Dec, precessed in the normal way, then changed back to x, y and z using unit vectors. EXAMPLE: Precess 1950 equinox coords x, y and z to 2000. IDL> precess_xyz,x,y,z, 1950, 2000 HISTORY: Written by P. Plait/ACC March 24 1999 (unit vectors provided by D. Lindler) Use /Radian call to PRECESS W. Landsman November 2000 Use two parameter call to ATAN W. Landsman June 2001 - """ #check inputs #take input coords and convert to ra and dec (in radians) ra = arctan2(y, x) _del = sqrt(x * x + y * y + z * z) #magnitude of distance to Sun dec = arcsin(z / _del) # precess the ra and dec ra,dec = precess(ra, dec, equinox1, equinox2, radian=True) #convert back to x, y, z xunit = cos(ra) * cos(dec) yunit = sin(ra) * cos(dec) zunit = sin(dec) x = xunit * _del y = yunit * _del z = zunit * _del return x,y,z # -*- coding: utf-8 -*-
[docs]def premat(equinox1, equinox2, fk4=False): """ NAME: PREMAT PURPOSE: Return the precession matrix needed to go from EQUINOX1 to EQUINOX2. EXPLANTION: This matrix is used by the procedures PRECESS and BARYVEL to precess astronomical coordinates CALLING SEQUENCE: matrix = PREMAT( equinox1, equinox2, [ /FK4 ] ) INPUTS: EQUINOX1 - Original equinox of coordinates, numeric scalar. EQUINOX2 - Equinox of precessed coordinates. OUTPUT: matrix - double precision 3 x 3 precession matrix, used to precess equatorial rectangular coordinates OPTIONAL INPUT KEYWORDS: /FK4 - If this keyword is set, the FK4 (B1950.0) system precession angles are used to compute the precession matrix. The default is to use FK5 (J2000.0) precession angles EXAMPLES: Return the precession matrix from 1950.0 to 1975.0 in the FK4 system IDL> matrix = PREMAT( 1950.0, 1975.0, /FK4) PROCEDURE: FK4 constants from "Computational Spherical Astronomy" by Taff (1983), p. 24. (FK4). FK5 constants from "Astronomical Almanac Explanatory Supplement 1992, page 104 Table 3.211.1. REVISION HISTORY Written, Wayne Landsman, HSTX Corporation, June 1994 Converted to IDL V5.0 W. Landsman September 1997 """ deg_to_rad = pi / 180.0e0 sec_to_rad = deg_to_rad / 3600.e0 t = 0.001e0 * (equinox2 - equinox1) if not fk4: st = 0.001e0 * (equinox1 - 2000.e0) # Compute 3 rotation angles a = sec_to_rad * t * (23062.181e0 + st * (139.656e0 + 0.0139e0 * st) + t * (30.188e0 - 0.344e0 * st + 17.998e0 * t)) b = sec_to_rad * t * t * (79.280e0 + 0.410e0 * st + 0.205e0 * t) + a c = sec_to_rad * t * (20043.109e0 - st * (85.33e0 + 0.217e0 * st) + t * (-42.665e0 - 0.217e0 * st - 41.833e0 * t)) else: st = 0.001e0 * (equinox1 - 1900.e0) # Compute 3 rotation angles a = sec_to_rad * t * (23042.53e0 + st * (139.75e0 + 0.06e0 * st) + t * (30.23e0 - 0.27e0 * st + 18.0e0 * t)) b = sec_to_rad * t * t * (79.27e0 + 0.66e0 * st + 0.32e0 * t) + a c = sec_to_rad * t * (20046.85e0 - st * (85.33e0 + 0.37e0 * st) + t * (-42.67e0 - 0.37e0 * st - 41.8e0 * t)) sina = sin(a) sinb = sin(b) sinc = sin(c) cosa = cos(a) cosb = cos(b) cosc = cos(c) r = zeros((3, 3)) r[0,:] = array([cosa * cosb * cosc - sina * sinb, sina * cosb + cosa * sinb * cosc, cosa * sinc]) r[1,:] = array([-cosa * sinb - sina * cosb * cosc, cosa * cosb - sina * sinb * cosc, -sina * sinc]) r[2,:] = array([-cosb * sinc, -sinb * sinc, cosc]) return r
[docs]def readcol(filename, delimiter=' ', format=None, skiprows=0, **kw): """ This routine reads the data from the ascii file a,b,c=readcol('dat.txt',delimiter='|') you can skip a certain number of rows in the top of the file by specifying skiprows=X option. The format option is needed if you have datatypes different from float in your table In that case format string should be comma delimted set of I (int) F(float) D (double) S (string) characters. E.g. a,b,c=readcol('dat.txt',format='I,S,D') """ import scipy.io import numpy if format==None: res=numpy.loadtxt(filename, delimiter=delimiter, skiprows=skiprows, **kw) nrows = res.shape[0] if res.ndim==2: ncols = res.shape[1] elif res.ndim==1: ncols=1 res.shape=(nrows,1) else: raise "Exception: wrong array dimensions" stor=[] for i in range(ncols): stor.append(res[:,i]) return tuple(stor) else: types=[] i=0 formats=format.split(',') convs={} retnull = lambda s: numpy.float(s or 0) for i, a in enumerate(formats): if a=='I': curtype=numpy.int32 convs[i]=retnull elif a=='F': curtype=numpy.float32 convs[i]=retnull elif a=='D': curtype=numpy.float64 convs[i]=retnull elif a=='S': curtype="S100"#numpy.str else: raise Exception("Sorry, Unknown type in the format string\n The allowed types are S,I,F,D (string, int, float, double)") types.append(("a%d"%i,curtype)) rec=numpy.loadtxt(file(filename),dtype=types, delimiter=delimiter, skiprows=skiprows,converters=convs) ncols=len(rec[0]) nrows=len(rec) buf="(" stor=[] for a in formats: if a=='I': tmp=numpy.zeros(nrows,dtype=numpy.int32) elif a=='F': tmp=numpy.zeros(nrows,dtype=numpy.float32) elif a=='D': tmp=numpy.zeros(nrows,dtype=numpy.float64) elif a=='S': tmp=numpy.zeros(nrows,dtype="S100") stor.append(tmp) for i in range(ncols): for j in range(nrows): stor[i][j]=rec[j][i] return tuple(stor)
[docs]def sphdist (ra1, dec1, ra2, dec2): """measures the spherical distance in degrees The input has to be in degrees too """ dec1_r = deg2rad(dec1) dec2_r = deg2rad(dec2) return 2 *\ rad2deg \ ( arcsin ( sqrt ( ( sin((dec1_r - dec2_r) / 2) )**2 + cos(dec1_r) * cos(dec2_r) * ( sin((deg2rad(ra1 - ra2)) / 2) )**2 ) ) )
[docs]def xyz(date, equinox=None): """ NAME: XYZ PURPOSE: Calculate geocentric X,Y, and Z and velocity coordinates of the Sun EXPLANATION: Calculates geocentric X,Y, and Z vectors and velocity coordinates (dx, dy and dz) of the Sun. (The positive X axis is directed towards the equinox, the y-axis, towards the point on the equator at right ascension 6h, and the z axis toward the north pole of the equator). Typical position accuracy is <1e-4 AU (15000 km). CALLING SEQUENCE: XYZ, date, x, y, z, [ xvel, yvel, zvel, EQUINOX = ] INPUT: date: reduced julian date (=JD - 2400000), scalar or vector OUTPUT: x,y,z: scalars or vectors giving heliocentric rectangular coordinates (in A.U) for each date supplied. Note that sqrt(x^2 + y^2 + z^2) gives the Earth-Sun distance for the given date. xvel, yvel, zvel: velocity vectors corresponding to X, Y and Z. OPTIONAL KEYWORD INPUT: EQUINOX: equinox of output. Default is 1950. EXAMPLE: What were the rectangular coordinates and velocities of the Sun on Jan 22, 1999 0h UT (= JD 2451200.5) in J2000 coords? NOTE: Astronomical Almanac (AA) is in TDT, so add 64 seconds to UT to convert. IDL> xyz,51200.5+64.d/86400.d,x,y,z,xv,yv,zv,equinox = 2000 Compare to Astronomical Almanac (1999 page C20) X (AU) Y (AU) Z (AU) XYZ: 0.51456871 -0.76963263 -0.33376880 AA: 0.51453130 -0.7697110 -0.3337152 abs(err): 0.00003739 0.00007839 0.00005360 abs(err) (km): 5609 11759 8040 NOTE: Velocities in AA are for Earth/Moon barycenter (a very minor offset) see AA 1999 page E3 X VEL (AU/DAY) YVEL (AU/DAY) Z VEL (AU/DAY) XYZ: -0.014947268 -0.0083148382 -0.0036068577 AA: -0.01494574 -0.00831185 -0.00360365 abs(err): 0.000001583 0.0000029886 0.0000032077 abs(err) (km/sec): 0.00265 0.00519 0.00557 PROCEDURE CALLS: PRECESS_XYZ REVISION HISTORY Original algorithm from Almanac for Computers, Doggett et al. USNO 1978 Adapted from the book Astronomical Photometry by A. Henden Written W. Landsman STX June 1989 Correct error in X coefficient W. Landsman HSTX January 1995 Added velocities, more terms to positions and EQUINOX keyword, some minor adjustments to calculations P. Plait/ACC March 24, 1999 """ picon = pi / 180.0e0 t = (date - 15020.0e0) / 36525.0e0 #Relative Julian century from 1900 # NOTE: longitude arguments below are given in *equinox* of date. # Precess these to equinox 1950 to give everything an even footing. # Compute argument of precession from equinox of date back to 1950 pp = (1.396041e0 + 0.000308e0 * (t + 0.5e0)) * (t - 0.499998e0) # Compute mean solar longitude, precessed back to 1950 el = 279.696678e0 + 36000.76892e0 * t + 0.000303e0 * t * t - pp # Compute Mean longitude of the Moon c = 270.434164e0 + 480960.e0 * t + 307.883142e0 * t - 0.001133e0 * t * t - pp # Compute longitude of Moon's ascending node n = 259.183275e0 - 1800.e0 * t - 134.142008e0 * t + 0.002078e0 * t * t - pp # Compute mean solar anomaly g = 358.475833e0 + 35999.04975e0 * t - 0.00015e0 * t * t # Compute the mean jupiter anomaly j = 225.444651e0 + 2880.0e0 * t + 154.906654e0 * t * t # Compute mean anomaly of Venus v = 212.603219e0 + 58320.e0 * t + 197.803875e0 * t + 0.001286e0 * t * t # Compute mean anomaly of Mars m = 319.529425e0 + 19080.e0 * t + 59.8585e0 * t + 0.000181e0 * t * t # Convert degrees to radians for trig functions el = el * picon g = g * picon j = j * picon c = c * picon v = v * picon n = n * picon m = m * picon # Calculate X,Y,Z using trigonometric series x = 0.999860e0 * cos(el) - 0.025127e0 * cos(g - el) + 0.008374e0 * cos(g + el) + 0.000105e0 * cos(g + g + el) + 0.000063e0 * t * cos(g - el) + 0.000035e0 * cos(g + g - el) - 0.000026e0 * sin(g - el - j) - 0.000021e0 * t * cos(g + el) + 0.000018e0 * sin(2.e0 * g + el - 2.e0 * v) + 0.000017e0 * cos(c) - 0.000014e0 * cos(c - 2.e0 * el) + 0.000012e0 * cos(4.e0 * g + el - 8.e0 * m + 3.e0 * j) - 0.000012e0 * cos(4.e0 * g - el - 8.e0 * m + 3.e0 * j) - 0.000012e0 * cos(g + el - v) + 0.000011e0 * cos(2.e0 * g + el - 2.e0 * v) + 0.000011e0 * cos(2.e0 * g - el - 2.e0 * j) y = 0.917308e0 * sin(el) + 0.023053e0 * sin(g - el) + 0.007683e0 * sin(g + el) + 0.000097e0 * sin(g + g + el) - 0.000057e0 * t * sin(g - el) - 0.000032e0 * sin(g + g - el) - 0.000024e0 * cos(g - el - j) - 0.000019e0 * t * sin(g + el) - 0.000017e0 * cos(2.e0 * g + el - 2.e0 * v) + 0.000016e0 * sin(c) + 0.000013e0 * sin(c - 2.e0 * el) + 0.000011e0 * sin(4.e0 * g + el - 8.e0 * m + 3.e0 * j) + 0.000011e0 * sin(4.e0 * g - el - 8.e0 * m + 3.e0 * j) - 0.000011e0 * sin(g + el - v) + 0.000010e0 * sin(2.e0 * g + el - 2.e0 * v) - 0.000010e0 * sin(2.e0 * g - el - 2.e0 * j) z = 0.397825e0 * sin(el) + 0.009998e0 * sin(g - el) + 0.003332e0 * sin(g + el) + 0.000042e0 * sin(g + g + el) - 0.000025e0 * t * sin(g - el) - 0.000014e0 * sin(g + g - el) - 0.000010e0 * cos(g - el - j) #Precess_to new equator? if equinox is not None: x, y, z = precess_xyz(x, y, z, 1950, equinox) xvel = -0.017200e0 * sin(el) - 0.000288e0 * sin(g + el) - 0.000005e0 * sin(2.e0 * g + el) - 0.000004e0 * sin(c) + 0.000003e0 * sin(c - 2.e0 * el) + 0.000001e0 * t * sin(g + el) - 0.000001e0 * sin(2.e0 * g - el) yvel = 0.015780 * cos(el) + 0.000264 * cos(g + el) + 0.000005 * cos(2.e0 * g + el) + 0.000004 * cos(c) + 0.000003 * cos(c - 2.e0 * el) - 0.000001 * t * cos(g + el) zvel = 0.006843 * cos(el) + 0.000115 * cos(g + el) + 0.000002 * cos(2.e0 * g + el) + 0.000002 * cos(c) + 0.000001 * cos(c - 2.e0 * el) #Precess to new equator? if equinox is not None: xvel, yvel, zvel = precess_xyz(xvel, yvel, zvel, 1950, equinox) return x, y, z, xvel, yvel, zvel