Contents:
New Module to implement tasks relating to Gaussian Processes.
2013-03-14 18:40 IJMC: Begun.
Compute log likelihood using Gaussian Process techniques.
INPUTS: |
|
---|---|
OPTIONS: |
jointpars : also valid |
SEE_ALSO: |
|
Returns negative log likelihood, for minimization routines.
See logLikelihood() for syntax and details.
Construct a squared-exponential kernel with specified perameters.
INPUTS: |
params : sequence
|
---|---|
NOTES: | Computes k(x, x’) = h^2 exp(- [ (x - x’) / 2L ]^2 ) |
RETURNS: | k, the kernel matrix. |
REFERENCE: | Roberts et al. 2012, Eq. 13. |
EXAMPLE: | import gaussianprocess as gp
import numpy as np
import pylab as py
x0 = np.arange(50.) # independent data
k = gp.squaredExponentialKernel([1, 5], x0)
sample_draw = np.random.multivariate_normal(np.zeros(x0.size), k, 1).ravel()
|
Construct a white-noise kernel (diagonal matrix) with specified sigma.
INPUTS: |
|
---|---|
NOTES: | Computes k(i, j) = delta_{ij} s^2 |
RETURNS: | k, the kernel matrix. |
REFERENCE: | Roberts et al. 2012, Eq. 12. |
EXAMPLE: | import gaussianprocess as gp
import numpy as np
import pylab as py
x0 = np.arange(50.) # independent data
k = gp.whiteNoiseKernel(1, x0)
sample_draw = np.random.multivariate_normal(np.zeros(x.size), k, 1).ravel()
|